Fragments of Structural and Algorithmic Graph Theory

A very brief and informal overview of some basic notations and definitions
Martin Milanič, martin.milanic@upr.si

I. Graphs and graph parameters

- graph: $G=(V, E)$ where V is a finite set of vertices and E is a subset of pairs of vertices (elements of E are referred to as edges)
$N(v)=\{u \in V: u v \in E\}$ is the set of neighbors of a vertex $v, d(v)=d_{G}(v)=|N(v)|$ is its degree
$\Delta(G)$: maximum degree of a vertex in G
$\delta(G)$: minimum degree of a vertex in G
- K_{n} : a complete graph on n vertices; C_{n} : a cycle on n vertices; P_{n} : a path on n vertices; $K_{m, n}$: a complete bipartite graph with $m+n$ vertices.
- independent set (stable set): a subset of pairwise non-adjacent vertices in a graph
$\alpha(G)=$ independence number of G : maximum size of an independent set in G
- clique: a subset of pairwise adjacent vertices in a graph
$\omega(G)=$ clique number of G : maximum size of a clique in G
- dominating set: a subset of vertices such that every vertex not in the set has a neighbor in the set
$\gamma(G)=$ domination number of G : minimum size of a dominating set in G
- vertex cover: a subset of vertices such that every edge of the graph has at least one of its endpoints in the set
$\tau(G)=$ vertex cover number of G : minimum size of a vertex cover in G
- matching: a subset of pairwise disjoint edges
perfect matching: a matching covering all vertices of the graph
$v(G)=$ matching number of G : maximum size of a matching in G
- k-(vertex) coloring: a mapping $c: V \rightarrow\{1, \ldots, k\}$ such that for all $u, v \in V$ such that $\{u, v\} \in E$, it holds $c(u) \neq c(v)$
k-colorable graph: a graph that admits a k-coloring
$\chi(G)=$ chromatic number of G : minimum k such that G is k-colorable
- k-edge coloring: a mapping $c: E \rightarrow\{1, \ldots, k\}$ such that for all $e, f \in E$ such that $e \neq f$ and $e \cap f \neq \varnothing$, it holds that $c(e) \neq c(f)$
k-edge colorable graph: a graph that admits a k-edge coloring
$\chi^{\prime}(G)=$ chromatic index of G : minimum k such that G is k-edge colorable
- list-chromatic number of G : minimum k such that for all choices of sets $S_{v}, v \in V$, with $\left|S_{v}\right| \geq k$, there exists an S-coloring (a mapping $c: V \rightarrow \cup_{v \in V} S_{v}$ such that $c(v) \in S_{v}$ for all $v \in V$ and $c(u) \neq c(v)$ for all $u v \in E)$
- simplicial vertex: a vertex whose neighborhood is a clique

II. Graph operations

- $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- $H=\left(V^{\prime}, E^{\prime}\right)$ is an induced subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime}=\left\{e \in E \mid e \subseteq V^{\prime}\right\}$; notation: $H<G$
- disjoint union of two graphs G and H : the graph obtained by adding to G a disjoint copy of H and no additional edges
- join of two graphs G and H : the graph obtained by adding to G a disjoint copy of H and all possible edges between G and H
- complement of a graph $G=(V, E)$: a graph \bar{G} with vertex set V in which two vertices are adjacent if and only if they are non-adjacent in G
- the line graph of a graph $G=(V, E)$ is the graph with vertex set E in which two distinct edges e and f are adjacent if and only if they have a common endpoint in G

III. Graph classes

- hereditary graph class: a set of graphs closed under vertex deletions (equivalently, closed under induced subgraphs)
- forest: a graph without cycles; tree: a connected forest
- bipartite graph: a graph such that there exists two disjoint sets A and B with $V=A \cup B$ such that $|e \cap A|=|e \cap B|=1$ for every edge $e \in E$; equivalently, a 2-colorable graph
- perfect graph: a graph such that $\chi(H)=\omega(H)$ for all its induced subgraphs H; equivalently: a $\left\{C_{5}, C_{7}, \overline{C_{7}}, C_{9}, \overline{C_{9}}, \ldots\right\}$-free graph
- threshold graph: a graph such that there exists non-negative weights $w: V \rightarrow \mathbb{R}_{+}$and a threshold t such that for every $I \subseteq V, \sum_{v \in I} w(v) \leq t$ if and only if I is an independent set; equivalently: a $\left\{2 K_{2}, C_{4}, C_{5}\right\}$-free graph
- split graph: a graph that admits a partition of its vertex set into a clique and an independent set; equivalently: a $\left\{2 K_{2}, C_{4}, C_{5}\right\}$-free graph
- cograph: a graph that can be recursively built from copies of the one-vertex graph by iteratively applying the operations of disjoint union and join; equivalently: a P_{4}-free graph
- chordal graph: a graph in which every cycle of lenth at least 4 has a chord (an edge connecting two non-consecutive vertices of the cycle); equivalently: a $\left\{C_{4}, C_{5}, \ldots\right\}$-free graph
- interval graph: intersection graph of closed intervals on the real line
- planar graph: a graph that can be drawn in the plane without edge crossings

IV. Graph problems

- Independent Set: Given a graph G and an integer k, is $\alpha(G) \geq k$?
- Clique: Given a graph G and an integer k, is $\omega(G) \geq k$?
- Vertex Cover: Given a graph G and an integer k, is $\tau(G) \leq k$?
- Matching: Given a graph G and an integer k, is $v(G) \geq k$?
- Dominating Set: Given a graph G and an integer k, is $\gamma(G) \leq k$?
- Independent Dominating Set: Given a graph G and an integer k, is there an independent dominating set of size at most k ?
- Colorability: Given a graph G and an integer k, is $\chi(G) \leq k$?
- k-Colorability: Given a graph G, is $\chi(G) \leq k$?
- Chromatic Index: Given a graph G and an integer k, is $\chi^{\prime}(G) \leq k$?
- Recognition of Graphs in X : Given a graph G, is $G \in X$?

