Musical Creativity

Jukka Toivanen
Introduction to Computational Creativity
Dept. of Computer Science
University of Helsinki
Basic Terminology

- **Melody** = linear succession of musical tones that the listener perceives as a single entity
- **Rhythm** = "movement" marked by the regulated succession of strong and weak elements, or of opposite or different conditions
- **Harmony** = use of simultaneous pitches (tones, notes), or chords
- **Timbre** = is the quality of a musical note or sound or tone that distinguishes different types of sound production
- **Tempo** = the speed or pace of a given piece
- **Dynamics** = the softness or loudness of a given note
Music and Automatization

- Strong connections between mathematics and music
- Many music composition tasks can be formalized (e.g. counterpoint)
- Very little real world semantics
- Ideal art form to be automatized?
- The most studied art form with computational means
Computer-Aided Algorithmic Composition (CAAC)

- Very active area of research and commercial software development
 - SuperCollider
 - Csound
 - MAX/MSP
 - Kyma
 - Nyquist
 - AC Toolbox
Algorithmic Sound Synthesis

- Tools for specifying and synthesizing sound waveforms
- Rather than the more abstract specification of music associated with traditional staff notation.
- Line between algorithmic composition and algorithmic sound synthesis is blurred in most of the CAAC systems
- The focus of this lecture is however on algorithmic composition, not on sound synthesis or CAAC tools
Algorithmic Composition and Computational Creativity

- Algorithmic composition means music composition with higher degrees of automation of compositional activities
 - Composition of music with minimal or no human intervention (autonomy)
- Computationally creative music composition systems should also include adaptation and produce more than mere pastiches
- Some of the systems are also intended to model aspects of human music perception and cognitive processes in general
Computer-Aided vs Automatic

- No clear distinction
 - Any automatic generation method can be used as a tool to aid humans
 - Autonomous systems can be built upon existing tools for CAAC
Historical Predecessors in Automated Composition

- Mozart’s dice games (Musikalisches Würfelspiel)
- Schoenberg’s twelve-tone technique
- Cage’s aleatoric music
- ...

- Later: partial or total automation of music composition by formal, computational means (algorithmic composition)
Automatic Music Composition

- The first record: *Illiac Suite* for a string quartet (Hiller and Isaacson, 1958)
 - Rule systems and Markov chains
 - Generated in 1956
 - Series of experiments in formal music composition
 - Musically not very sophisticated or successful
 - However, impressive for its time
Illiac Suite (Excerpt)

Lejaren Hiller - Illiac Suite for String Quartet (1956)

First experiment: presto, andante, allegro
Overview of Different Methods

- Grammars
- Knowledge-based systems
- Constraint programming
- Stochastic methods
- Evolutionary algorithms
Grammars

- Hierarchical structure by recursive application of rules defined in the grammar
- Early authors derived the rules manually
- *A Generative Theory of Tonal Music* (Lerdahl et al., 1983)
- The problem with a grammatical approach to algorithmic composition is the difficulty to manually define a set of grammatical rules to produce good compositions
- Rule learning
 - E.g. Schwanauer (1993)
Experiments in Musical Intelligence (Cope, 1992)

- Not exactly a grammar but a borderline approach
- Analysis of musical compositions in a given style -> Augmented Transition Network (ATN)
- Basically a finite state automaton able to parse relatively complex languages
Experiments in Musical Intelligence
Emily Howell (Cope)

- Developed by Cope during the 1990s
- Rule-based system based on the compositions by EMI
- Not very much detailed knowledge about the methodology but very much attention in the popular media
Emily Howell
Constraint Satisfaction

- Describing the problem of music composition as a set of interacting constraints and using existing constraint solvers to search for solutions
- Boenn et al. (2008)
 - Answer set programming to encode rules for melody composition and harmonization
- CHORAL (Ebcioğlu, 1988)
 - Four-part chorales in the style of J.S. Bach
 - Rule-based expert system
 - 350 rules to guide the harmonization process and melody generation
Stochastic Methods

- Markov chains widely used in music
 - Harmony
 - Melody
 - Rhythm
 - Very popular especially in the early years of algorithmic composition

- Problem of having only local constraints
 - No hierarchical structures that are usually present in music at all levels

- Source of raw material, not necessarily for producing the whole composition
IDyOM Model

- Generative model based on the GTTM
- Markov chain of varying length
- Complicated backoff / smoothing
- Training data of approx. 200 choral melodies
Generative Theory of Tonal Music (GTMM)

- “Perfect” theory of tonal music (but still under development)
- Four components: rule sets
- Every component contains hard rules and preference rules
- Because of the preference rules the theory cannot be implemented without modifications
- Thus, more like a descriptive model than an objective model
IDyOM Model

1st-order matrix

<table>
<thead>
<tr>
<th>Note</th>
<th>A</th>
<th>C#</th>
<th>E♭</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>C#</td>
<td>0.25</td>
<td>0.05</td>
<td>0.7</td>
</tr>
<tr>
<td>E♭</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

2nd-order matrix

<table>
<thead>
<tr>
<th>Note</th>
<th>A</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.18</td>
<td>0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>AD</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>AG</td>
<td>0.15</td>
<td>0.75</td>
<td>0.1</td>
</tr>
<tr>
<td>DD</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DA</td>
<td>0.25</td>
<td>0.0</td>
<td>0.75</td>
</tr>
<tr>
<td>DG</td>
<td>0.9</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>GG</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>GA</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>GD</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Stochastic Methods

- More sophisticated statistical methods have been applied to different areas of music composition:
 - Hidden Markov Models to harmonize melodies
 - Variable order Markov models to generate chord sequences and melodies
Evolutionary Algorithms

- Repeated cycle of evaluation, selection and reproduction with variation for candidate solutions
- Difficulty of defining automatic fitness functions
- E.g. Marques et al. (2000)
 - Short polyphonic melodies
 - Very direct representation for the genotypes
 - Simple fitness function
Iamus: Example of Evolutionary Music
Where is Creativity?

- Can we call the systems creative?
- How much is there
 - Invention / imagination?
 - Learning and adaptation?
- Is the system able to express something that was not in the training material?
- Could the system surprise its creator?
References
