Computational Cognitive Neuroscience Exercise Set 2

Due: 04.02.2016, before class

Guidelines for Submission

- Submissions can be made via email to hande.celikkanat@helsinki.fi before the deadline, or by delivering a hard copy at the beginning of the class.
- In case you are submitting both written exercises and programming exercises, please prepare two separate files respectively for submission.
- Please do submit programming exercises only via email, and as python scripts with .py extension. Also please kindly indicate with a comment which exercise you are attempting before related code.
- Maximum number of points you can get for exercises per week is 10. Maximum number of points you can get in total is 20. One exercise is worth 1 point unless stated otherwise in the exercise.

1 Rojas Ch. 3

- 1. Construct a (single-unit) perceptron which implements the NAND logic gate: the input is a binary vector of length 2 and the output is 1 if and only if the input is not equal to [1 1].
- 2. Construct a network of perceptrons (or a multilayer perceptron) which implements the XOR logic gate: the input is a binary vector of length 2 and the output is 1 if and only if the values of the input vector are unequal.
- 3. Show that a (single-unit) perceptron cannot detect parity. More precisely, if a perceptron receives a binary vector of length $n \ge 2$, then it is not the case that it outputs 1 if and only if the number of 1's in the input vector is even.
- 4. Construct a multilayer perceptron with binary inputs of size 8 which detects parity: the (onedimensional) output is 1 if and only if the number of 1's in the input is even.
- 5. The following matrix represents an 8×8 image:

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0

What will it look like if the following detector (perceptron) is applied to each pixel which is not on the edge (internal pixels):

$$\begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

The output should be a 6×6 image/matrix.

- 6. Write a program which applies the edge detector from the previous exercise to a given grayscale image.
- 7. Write a program which detects edges from a given greyscale image.

2 Rojas Ch. 4

- 1. Show that the sets $\{(0,1),(1,0)\} \subset \mathbb{R}^2$ and $\{(0,0),(1,1)\} \subset \mathbb{R}^2$ are not linearly separable.
- 2. Show that the sets $\{(x, e^x) \mid x \in \mathbb{R}\}$ and $\{(e^x, x) \mid x \in \mathbb{R}\}$ are linearly separable.
- 3. Rojas page 83 last four lines: Let A be an $(n + 1) \times n$ -matrix with last row having only 1 as entriest. Show that $\{\mathbf{w} \mid \mathbf{Aw} > 0\}$ is convex. A set S is convex if for every two points $\mathbf{x}, \mathbf{y} \in S$, the line segment joining \mathbf{x} and \mathbf{y} is a subset of S.
- 4. Implement the perceptron learning algorithm (page 85) for 2-dimensional inputs. Train it to become AND logic gate.
- 5. (Continuation of the previous exercise) Generate random sets P and N of vectors so that $P \subset [0,1] \times [0,1]$ and $N \subset [0,1] \times [-1,0]$. Use your learning algorithm to separate them. Try different sizes of P and N: from 2 to 100 and compare how much time does it take for the algorithm to converge.

3 Rojas Ch. 7

1. Consider the following network:

where σ is some differentiable function applied to the weighted sum of the inputs.

- (a) What is the function calculated by the network, i.e. write the output of the last neuron in terms of f_i 's, w_i 's and x.
- (b) Denote that function by $\Phi(x, w_0, w_1, w_2, w_3)$. What is the derivative of Φ with respect to w_2 ?
- (c) What is derivative of Φ with respect to x?
- 2. Consider the network of the previous exercise. Suppose that given input 5 we would like to have output 1. The error is defined by

$$E = \frac{1}{2} |\Phi(5, \bar{w}) - 1|^2.$$

Write down the derivative of E with respect to w_2 .

3. (If done well, worth of 2 exercises) Implement a one-layer backpropagation with input *n*-dimensional and output *m*-dimensional without non-linearities, i.e. the network is equivalent to multiplying the input \bar{x} by the connection matrix **W**. Use the standard error function $\|\mathbf{x}\mathbf{W} - \mathbf{y}\|^2$.

This algorithm can be used to compute a pseudoinverse matrix: If the training data is given as a matrix X (a single row is one input) and the number of rows is m and the expected answer for i:th input is a vector with 1 at the i:th coordinate and 0 everywhere else, then the optimal weight matrix is the pseudoinverse of X. Thus your backpropagation algorithm in fact computes the pseudoinverse.

Hints: Rojas 7.3.3 is useful. For n,m<10 a good learning constant is $\gamma=0.2$ and number of iterations around 150.