
CCN Exercises session 4,

to be discussed on Thu 18th Feb

Aapo Hyvärinen

9th February 2016

Note that no bonus points are given for these exercises (or any during the
second half of the course).

1 Written exercises

1. Show that convolution is a symmetric operation, i.e. f ∗ g = g ∗ f .

2. Show Equation (2.3) in the NIS book.

3. Prove Equation (2.17). Hint: Find two different values for x so that you
get the two equations

A cosψ = C (1)

−A sinψ = S (2)

Now, solve for A and ψ as follows. First, take the squares of both sides of
both equations (1) and (2) and sum the two resulting equations. Recall
the sum of squares of a sine and a cosine function. Second, divide both
sides of the equations (1) and (2) with each other.

4. Summarize the basic forms of nonlinear behaviour in simple cells, each
with a single word if possible, and a short explanation.

5. Assume a visual neuron is linear. Stimulus A does not elicit any (non-zero)
response. Stimulus B does not elicit any response either. Is it possible
that the superimposed stimulus A+B elicits a response?

6. Assume a visual neuron is follows the nonlinear model of section 3.4.1,
with Equations (3.3) and (3.6). Assume again that Stimulus A does not
elicit any response, and Stimulus B does not elicit any response either. Is
it possible that the superimposed stimulus A+B elicits a response?

7. Assume Stimulus A elicits no reponse, but Stimulus B does elicit a re-
sponse. What can we say about Stimulus A+B, for the two models con-
sidered above?

1



2 Computer assignments

Let’s assume we have done import matplotlib.pyplot as plt and import

numpy as np in the following.

1. The orthogonality of the Fourier basis is based on the following kinds of
properties ∫ π

−π

sinx cosx dx = 0 (3)∫ π

−π

sinx sin 2x dx = 0 (4)

where the integral is interpreted as a continuous-valued version of a dot-
product. Plot these two integrands and figure out why the integrals are
zero. To do the plotting, consider functions np.arange and plt.plot. At
the end you need plt.show().

2. Define a receptive field W so that it corresponds to a 2-D Fourier basis
vector, like in Fig. 2.7b) in NIS book. You should produce W as a 100×100
two-dimensional array of the np.array class. You may find np.meshgrid

useful. You can plot W by:

img=plt.imshow(W)

img.set_cmap(’grayscale’)

plt.show()

3. Same as above, but produce a Gabor receptive field, a bit like in Figure
3.11a)—play with the parameters so that your receptive field looks as close
to this figure as possible. Plot this receptive field as above. From now on,
we will use this as W . Produce also an image stimulus I which is a Gabor
function but with parameters different from I.

4. Define a function (or, if you don’t want to get into python details, some
short piece of code) which computes the dot-product between W and
I as in Equation (3.1). Now the complication here is that W is two-
dimensional, but usually we compute dot-products between one-dimensional
vectors.

5. Produce image stimuli A,B which are also of the form of Gabor functions,
and which have the behaviours of A, B in the exercises 1.5-1.7, given
receptive field W (let’s only consider the linear case). Reproduce the
results in those exercices numerically.

2


