
582631 Introduction to Machine Learning, Fall 2016
Exercise set 1

Due November 10th–11th.

Pen-and-paper problem

Problem 1 (3+3 points) Let X1, . . . , Xn be independent and identically distributed (i.i.d.) binary outcomes
distributed according to Bernoulli distribution, Ber(p), so that the probability that each of them takes value 1
is given by E[Xi] = p. Hoeffding’s inequality is a useful result in probability that tells us that the probability
that the total number of outcomes with value 1 divided by n is not too far from its expectation, which is
E[1n

∑n
i=1Xi] = 1

n

∑n
i=1E[Xi] = p:

Pr[|p− 1

n

n∑
i=1

Xi| > ε] ≤ 2 exp(−2nε2).

(You can think of the Xi indicating whether a classifier makes a correct prediction in a binary classification
task. Hoeffding’s inequality guarantees that observed performance is going to be a close to the true accuracy,
p, of the classifier with high probability.)

(a) (3 points) Solve for the value of ε for which the above upper bound equals α. For example, with sample
size n = 10 and α = 0.05, this provides a bound that guarantees that with 95 % probability, the observed
number of occurrences of Xi = 1 is within the interval [n(p − ε), n(p + ε)]. Evaluate the width of this
interval for n = 10, 100, and 1000. (Note that for different n, you will get different values of ε as well.)

(b) (3 points) The union bound (or Boole’s inequality) is another simple and nice result in probability. It
simply states that if there are a number of events, A1, . . . , Ak, with probabilities P (A1), . . . , P (Ak), then
the probability that at least one of them occurs is upper bounded by

P (∪ki=1Ai) ≤
k∑

i=1

P (Ai).

Consider now a set of k classifiers, each of which is associated with a separate set of n Bernoulli trials
for which we can apply Hoeffding’s inequality. Use the union bound together with Hoeffding’s inequality
to bound the probability that for any of the classifiers, the difference between the observed number
of outcomes with value 1 divided by n and its expectation is greater than ε. (Hint: Here P (Ai) =
Pr[|p− 1

n

∑n
i=1Xi| > ε].)

Again, solve for ε for which the resulting probability upper bound equals some α. What does this tell you
about the effect of k on the resulting guarantee about the observed vs real accuracy? Evaluate the width
of the interval1 [n(p− ε), n(p+ ε)] for n = 10, 100, and 1000 when k = 1, 10, and 100.

1 Note that while the accuracy, p, may differ from one classifier to another, the width of the interval will
only depend on the sample size n and α.

(continued on the next page...)

1

Computer problems

Problem 2 (6 points)

Exercise 8 on p. 54 of the book.

Problem 3 (4+4+4 points)

In this problem, we will test linear regression on a simple synthetic dataset. We will use the following polynomial
as the underlying target function

y = f(x) = 2 + x− 0.5x2. (1)

First, randomly sample 30 points xi from the uniform distribution (function runif in R) on the interval [−3, 3].
Then, randomly generate the yi using

yi = f(xi) + εi, (2)

where f is as defined above, and the εi are i.i.d. normal random variables (function rnorm in R) with zero mean
and standard deviation 0.4. The resulting 30 pairs (xi, yi) is your data set for this exercise.

(a) (4 points) First, let’s fit polynomials of order 0 to 10 to this dataset using linear regression, minimizing
the sum of squares error. That is, fit functions of the form

ŷ =

K∑
p=0

wpx
p (3)

with K = 0, . . . , 10 to the data. For instance, for K = 4 the polynomial to fit is

ŷ = w0 + w1x+ w2x
2 + w3x

3 + w4x
4. (4)

For each of the 11 values of K, produce a separate plot showing the datapoints (xi, yi) and the fitted
polynomial. (Plot the polynomial as a curve, in the full interval [−3, 3], overlayed on the scatterplot of
the points.) You should see that as the order of the polynomial K increases, the curve comes closer and
closer to fitting all the datapoints.

Calculate the mean squared error (MSE) on the training data:

MSE =

∑n
i=1(yi − ŷi)2

n
, (5)

and compare the MSE of the fitted different order models.

(b) (4 points) Next, generate 1000 more data points from the same polynomial and use them as a test set
to evaluate the predictive performance of the fitted models. (Hint: The predict function that takes as
arguments the fitted model and new data points will probably come in handy.)

Plot both the training MSE and the test MSE as a function of the polynomial order. What do you notice?

(c) (4 points) Finally, let’s use a technique called 10-fold cross-validation to automatically select a model based
on the 30 training examples we have. Divide the dataset into 10 equal-sized subsets (i.e. 3 datapoints in
each subset), and, for each value of K = 0, . . . , 11 and each data subset j = 1, . . . 10, use all the data
except the data in subset j to fit the polynomial of order K, and compute the resulting sum of squared
errors on subset j. For each value of K, sum together the squared errors coming from the different folds j.
Plot these results with K on the horizontal axis, and the sum of squared errors on the vertical axis. How
does this function behave? Does the cross-validated error improve with increasing K? Which K gives the
minimum error?

2

