582631 - 5 credits
 Introduction to Machine Learning

Lecturer: Teemu Roos
Assistant: Ville Hyvönen

Department of Computer Science University of Helsinki
(based in part on material by Patrik Hoyer and Jyrki Kivinen)

November 1st-December 16th 2016

Lectures 3-4:
 Linear models \& Evaluating performance II November 8 \& 11, 2016

Linear models

- We consider the case $\mathbf{x} \in \mathbb{R}^{p}$ throughout this lecture
- Function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is linear if for some $\boldsymbol{\beta} \in \mathbb{R}^{p}$ it can be written as

$$
f(\mathbf{x})=\boldsymbol{\beta} \cdot \mathbf{x}=\sum_{j=1}^{p} \beta_{j} x_{j}
$$

and affine if for some $\boldsymbol{\beta} \in \mathbb{R}^{p}$ and $a \in \mathbb{R}$ we can write

$$
f(\mathbf{x})=\boldsymbol{\beta} \cdot \mathbf{x}+a
$$

- $\boldsymbol{\beta}$ is called coefficient vector and a is called intercept (or particularly in machine learning literature, weight vector and bias)

Linear models (2)

- Linear model generally means using an affine function by itself for regression, or as scoring function for classification
- The learning problem is to determine the parameters $\boldsymbol{\beta}$ and a based on data
- Linear regression and classification have been extensively studies in statistics

Univariate linear regression

- As warm-up, we consider linear regression in one-dimensional case $p=1$
- We use square error and want to minimise it on training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Thus, we want to find $a, \beta \in \mathbb{R}$ that minimise

$$
E(\beta, a)=\sum_{i=1}^{n}\left(y_{i}-\left(\beta x_{i}+a\right)\right)^{2}
$$

- This is known as ordinary least squares and can be motivated as maximum likelihood estimate for (β, a) if we assume

$$
y_{i}=\beta x_{i}+a+\epsilon_{i}
$$

where ϵ_{i} are i.i.d. Gaussian noise with zero mean

Univariate linear regression (2)

- We solve the minimisation problem by setting the partial derivatives to zero
- We denote the solution by $(\hat{\beta}, \hat{a})$
- We have

$$
\frac{\partial E(\beta, a)}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}-a\right)
$$

and setting this to zero gives

$$
\begin{gathered}
\hat{a}=\bar{y}-\beta \bar{x} \\
\text { where } \bar{y}=(1 / n) \sum_{i} y_{i} \text { and } \bar{x}=(1 / n) \sum_{i} x_{i}
\end{gathered}
$$

- This implies in particular that the point (\bar{x}, \bar{y}) is on the line $y=\hat{\beta} x+\hat{a}$

Univariate linear regression (3)

- Further,

$$
\frac{\partial E(\beta, a)}{\partial \beta}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\beta x_{i}-a\right)
$$

- Plugging in $a=\hat{a}$ and setting the derivative to zero gives us

$$
\sum_{i=1}^{n} x_{i}\left(y_{i}-\beta x_{i}-\bar{y}+\beta \bar{x}\right)=0
$$

from which we can solve

$$
\hat{\beta}=\frac{\sum_{i=1}^{N} x_{i}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N} x_{i}\left(x_{i}-\bar{x}\right)}
$$

Univariate linear regression (4)

- Since

$$
\sum_{i=1}^{n} \bar{x}\left(y_{i}-\bar{y}\right)=\bar{x}\left(\sum_{i=1}^{n} y_{i}-n \bar{y}\right)=0
$$

and

$$
\sum_{i=1}^{n} \bar{x}\left(x_{i}-\bar{x}\right)=\bar{x}\left(\sum_{i=1}^{n} x_{i}-n \bar{x}\right)=0
$$

we can finally rewrite this as

$$
\hat{\beta}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Notice that we have $\hat{\beta}=\sigma_{x y} / \sigma_{x x}$ where $\sigma_{p q}$ is sample covariance between p and q :

$$
\sigma_{p q}=\frac{1}{n-1} \sum_{i=1}^{n}\left(p_{i}-\bar{p}\right)\left(q_{i}-\bar{q}\right)
$$

Multivariate linear regression

- We now move to the general case of learning a linear function $\mathbb{R}^{p} \rightarrow \mathbb{R}$ for arbitrary p
- We use the squared error, which is by far the most commonly used loss for linear regression
- One potential problem with squared error is its sensitivity to outliers
- one alternative is absolute loss $|y-\hat{f}(x)|$
- computations become trickier with absolute loss

Multivariate linear regression (2)

- We assume that the matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ has n instances \mathbf{x}_{i} as its rows and $\mathbf{y} \in \mathbb{R}^{n}$ contains the corresponding labels y_{i}
- Terminology: \mathbf{X} is the design matrix; elements of \mathbf{x}_{i} are covariates; y_{i} is the response
- We write

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where the residual $\epsilon_{i}=y_{i}-\mathbf{x}_{i} \cdot \boldsymbol{\beta}$ indicates error that coefficient vector $\boldsymbol{\beta}$ makes on data point (\mathbf{x}_{i}, y_{i})

- Our goal is to find $\boldsymbol{\beta}$ which minimises the sum of squared residuals

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\|\boldsymbol{\epsilon}\|_{2}^{2}
$$

Multivariate linear regression (3)

- By an argument involving matrix derivatives (or alternatively, orthogonal projections), we obtain the least squares solution which can be conveniently expressed using matrix notation.
- With \mathbf{A}^{-1} denoting the matrix inverse of a (square) matrix \mathbf{A}, the solution is given by

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}
$$

- In R:
library (MASS)
lm.fit $=\operatorname{lm}($ medv \sim crim, data $=$ Boston $)$
lm.fit $=\operatorname{lm}(m e d v \sim$., data $=$ D) \# all variables
summary(lm.fit)

Multivariate linear regression (4)

- If the columns \mathbf{c}_{j} of \mathbf{X} are linearly independent, the matrix $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ is of full rank and has an inverse
- For $n \geq p$, this is true except for degenerate special cases
- FOr $n<p$, this is never true, and no unique solution exists (We'll talk about the "large p, small n " case later.)
- $\mathbf{X}^{T} \mathbf{X}$ is a $p \times p$ matrix, and inverting it takes $O\left(p^{3}\right)$ time
- For very high dimensional problems the computation time may be prohibitive

Useful trick

- It would be simpler to learn just linear functions and not worry about the intercept term separately
- An easy trick for this is to replace each instance $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right) \in \mathbb{R}^{p}$ by $\mathbf{x}_{i}^{\prime}=\left(1, x_{i 1}, \ldots, x_{i p}\right) \in \mathbb{R}^{p+1}$
- Now an affine function $f(\mathbf{x})=\boldsymbol{\beta} \cdot \mathbf{x}+a$ in \mathbb{R}^{p} becomes linear function $g\left(\mathbf{x}^{\prime}\right)=\boldsymbol{\beta}^{\prime} \cdot \mathbf{x}^{\prime}$ where $\boldsymbol{\beta}^{\prime}=\left(a, \beta_{1}, \ldots, \beta_{p}\right)$
- If we write the set of instances $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ as an $n \times p$ matrix, this means adding an extra column of ones

Useful trick (2)

- For most part we now present algorithms for learning linear functions (instead of affine)
- In practice, to run them on p-dimensional data, we add the column of ones and run the algorithm in $p+1$ dimensions
- The first component of $\boldsymbol{\beta}$ then gives the intercept
- However sometimes we might still want to treat the intercept separately (for example in regularisation)

Nonlinear models by transforming the input

- Linear regression can also be used to fit models which are nonlinear functions of the input
- Example: For fitting a degree 5 polynomial

$$
y_{i}=f\left(x_{i}\right)=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{i}+\boldsymbol{\beta}_{2} x_{i}^{2}+\boldsymbol{\beta}_{3} x_{i}^{3}+\boldsymbol{\beta}_{4} x_{i}^{4}+\boldsymbol{\beta}_{5} x_{i}^{5}
$$

... create the input matrix

$$
\mathbf{X}=\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} & x_{1}^{5} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} & x_{2}^{5} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & x_{3}^{4} & x_{3}^{5} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & x_{4}^{4} & x_{4}^{5} \\
\vdots & \vdots & \vdots & \vdots & \ddots &
\end{array}\right), \text { and } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots
\end{array}\right)
$$

Nonlinear predictors by transforming the input (2)

- We can also explicitly include some interaction terms, as in

$$
y_{i}=f\left(\mathbf{x}_{i}\right)=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{i 1}+\boldsymbol{\beta}_{2} x_{i 2}+\boldsymbol{\beta}_{3} x_{i 1} x_{i 2}
$$

using the following input matrix:

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{11} & x_{12} & x_{11} x_{12} \\
1 & x_{21} & x_{22} & x_{21} x_{22} \\
1 & x_{31} & x_{32} & x_{31} x_{32} \\
1 & x_{41} & x_{42} & x_{41} x_{42} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right), \text { and } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots
\end{array}\right)
$$

- See the book (page 87 onwards) for more on this.

Evaluating model performance

Evaluating models: Outline

- A fundamental issue in machine learning is that we build models based on training data, but really care about performance on new unseen test data
- Generalisation refers to the learned model's ability to work well also on unseen data
- good generalisation: what we learned from training data also applies to test data
- poor generalisation: what seemed to work well on training data is not so good on test data

Goals for this topic

- Familiarity with the basic ideas of evaluating generalisation performance of (supervised) learning system
- Ability to explain overfitting and underfitting with examples
- Ability to explain with examples the idea of model complexity and its relation to overfitting and underfitting
- Using separate training, validation and test sets and cross validation in practice

How good is my classifier?

- Apply the learned classifier to the training data?
- a simple model will not be able to fit all the training data perfectly
- the more complex the model, the better it typically fits
- in particular, in nested model classes such as polynomials of increasing order, a more complex model always fits better than a simpler model
- at the extreme case, we could fit a model that is flexible enough to fit any data perfectly
\Rightarrow does this suggest that a complex model is always better?
- Of course not... the goal of learning is to perform well on new (unseen) data. How can we test that?
- Note that we almost invariable make the basic assumption that future data comes from the same source as the training data. Otherwise we're doomed!

Statistical learning model

Setting the stage:

- We consider supervised learning: goal is to learn a function $\hat{f}: \mathcal{X} \rightarrow \mathcal{Y}$.
- During learning, we create \hat{f} based on training set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ where $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$
- Later we test \hat{f} on unseen data points $\left\{\left(x_{N+1}, y_{N+1}\right), \ldots,\left(x_{N+M}, y_{N+M}\right)\right\}$
- We have a loss function $L: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ and wish to minimise the average loss on unseen data

$$
\frac{1}{M} \sum_{i=1}^{M} L\left(\hat{f}\left(x_{N+i}\right), y_{N+i}\right)
$$

Statistical learning model (2)

- Loss function $L(\hat{y}, y)$: How much does it "cost" us if we predict \hat{y} when the outcome if y.
- We're already familiar with the squared error in regression:

$$
L(\hat{y}, y)=(\hat{y}-y)^{2}
$$

- In classification, the most straightforward loss function is the zero-one loss:

$$
L(\hat{y}, y)= \begin{cases}0, & \text { if } \hat{y}=y \\ 1, & \text { otherwise }\end{cases}
$$

- Asymmetric loss functions can be more sensible in many situations:

$$
L(\hat{y}, y)= \begin{cases}0, & \text { if } \hat{y}=y \\ a, & \text { if } \hat{y}=1, y=0 \\ b, & \text { if } \hat{y}=0, y=1\end{cases}
$$

Statistical learning model (3)

(loss functions continued...)

- A classifier can also make probabilistic predictions and output a probability distribution \hat{p} over the values of y.
- In the probabilistic case, an interesting loss function is the logarithmic loss (or log-loss for short):

$$
L(\hat{p}, y)=-\log \hat{p}(y) \geq 0
$$

- and many more...
- Furthermore, sometimes when minimizing the actual loss function is hard, we may use a surrogate loss function that is similar to the actual loss function but easier to manipulate we'll return to this in connection to Support Vector Machines

Statistical learning model (4)

- Assume that there is a fixed but unknown probability distribution P over $\mathcal{X} \times \mathcal{Y}$ such that pairs are $\left(x_{i}, y_{i}\right)$ are independent samples from it
- We say the data points are independent and identically distibuted (i.i.d.)
- We wish to minimise the generalisation error (also called risk) of \hat{f}, which is the expected loss

$$
\mathrm{E}_{(x, y) \sim P}[L(\hat{f}(x), y)]
$$

where $\mathrm{E}_{(x, y) \sim P}[\cdot]$ denotes expectation when a single data point (x, y) is drawn from P

Statistical learning model (5)

- If P were known, this would just be an optimization problem:

$$
\min _{\hat{f}} E_{(x, y) \sim P}[L(\hat{f}(x), y)]
$$

- (This problem could be very hard to solve, but it wouldn't be a statistical problem.)
- Since P is not known, learning comes to the picture

Statistical learning model (6)

- The key is that we have training data drawn from P, so that we can use it to make more or less accurate inferences about properties of P
- In particular, based on the law of large numbers (and as we have seen), the average loss is close to the expected loss with high probability:

$$
\sum_{i=1}^{n} \frac{1}{n} L\left(\hat{f}\left(x_{i}\right), y_{i}\right) \approx E_{(x, y) \sim P}[L(\hat{f}(x), y)]
$$

- For zero-one loss, the difference between the average and the expected loss can be bounded (with high probability) by Hoeffding's inequality; see Exercise 1.1
- ...but remember the problem when there are many models!

Overfitting

- Overfitting means creating models that follow too closely the specifics of the training data, resulting in poor performance on unseen data
- Overfitting often results from using too complex models with too little data
- complex models allow high accuracy but require lots of data to train
- simple models require less training data but are incapable of modelling complex phenomena accurately
- Choosing the right model complexity is a difficult problem for which there are many methods (incl. cross validation; Exercise 1.3)

What is model complexity?

- The simplest case is the one where the number of models available is finite; see again Exercise 1.1
- For parametric models the number of parameters can be used to obtain a measure of complexity (e.g. linear model in p dimensions, degree k polynomial)
- Some non-parametric models also have intuitive complexity measures (e.g. based on the number of nodes in decision tree)
- There are also less obvious parameters that can be used to control overfitting (e.g. kernel width, parameter k in kNN, norm of coefficient vector in linear model)
- Mathematical study of various formal notions of complexity is a vast field; we'll scratch the surface

Error vs flexibility (train and test)

- Left: Data source (black line), data (circles), and three regression models of increasing complexity; Right: training and test errors (squared error) of the three models
(Figure 2.9 from the course textbook)

Error vs flexibility (train and test)

- Typical behaviour: The higher the model complexity (more flexible model) the lower the error on the training sample. However, the error curve for a test sample is U-shaped.
(figure from Hastie et al, 2009)

Bias-variance tradeoff

- Based on N training datapoints from the distribution, how close is the learned classifier to the optimal classifier?

Consider multiple trials: repeatedly and independently drawing N training points from the underlying distribution.

- Bias: how far the average model (over all trials) is from the real optimal classifier
- Variance: how far a model (based on an individual training set) tends to be from the average model
- Goal: Low bias and low variance.
- High model complexity \Rightarrow low bias and high variance Low model complexity \Rightarrow high bias and low variance

Bias-variance for regression

- Bias and variance have a particular mathematical meaning in regression with square loss
- Let $\hat{f}_{S}: \mathcal{X} \rightarrow \mathbb{R}$ be the model our algorithm produces from training set S
- Let $f_{*}(x)$ be the prediction of some "target" function f_{*} (say, Bayes optimal)
- The loss of \hat{f} with respect to the target on a given point x is

$$
\left(f_{*}(x)-\hat{f}_{S}(x)\right)^{2}
$$

- Taking expectation over all possible training sets gives

$$
\mathrm{E}_{S}\left[\left(f_{*}(x)-\hat{f}_{S}(x)\right)^{2}\right]
$$

Bias-variance for regression (2)

- Write $\bar{f}(x)=\mathrm{E}_{S}[\hat{f}(x)]$ for the average prediction of our algorithm on x
- A straightforward calculation gives the decomposition

$$
\begin{aligned}
& \mathrm{E}_{S}\left[\left(f_{*}(x)-\hat{f}_{S}(x)\right)^{2}\right] \\
& \quad=\left(f_{*}(x)-\bar{f}_{S}(x)\right)^{2}+\mathrm{E}_{S}\left[\left(\hat{f}_{S}(x)-\bar{f}(x)\right)^{2}\right]
\end{aligned}
$$

- bias $\left(f_{*}(x)-\bar{f}_{S}(x)\right)^{2}$ measures how much our "aiming point" $\bar{f}(x)$ is off the "target" $f_{*}(x)$
- variance $\mathrm{E}_{S_{~}}\left[\left(\hat{f}_{S}(x)-\bar{f}(x)\right)^{2}\right]$ measures how much the actual prediction $\hat{f}_{S}(x)$ wanders around the "aiming point" due to random training set

Using 'validation' data to overcome overfitting

1. Split the data into 'train' and 'validation' subsets:

2. Fit models with varying complexity on 'training' data, e.g.

- regression with different covariate subsets (feature selection)
- decision trees with variable number of nodes
- support vector machines with different regularization parameters

3. Choose the subset/number-of-nodes/regularization based on performance on the 'validation' set
(An issue: the amount of training data is not the same as in the original problem. Also: trade-off between the amount of training vs validation data)

Cross-validation

To get more reliable statistics than a single 'split' provides, use K-fold cross-validation (see Exercise 1.3.c):

1. Divide the data into K equal-sized subsets:

2. For j goes from 1 to K :
2.1 Train the model(s) using all data except that of subset j
2.2 Compute the resulting validation error on the subset j
3. Average the K results

When $K=N$ (i.e. each datapoint is a separate subset) this is known as leave-one-out cross-validation.

