
582631 — 5 credits

Introduction to Machine Learning

Lecturer: Teemu Roos
Assistant: Ville Hyvönen

Department of Computer Science
University of Helsinki

(based in part on material by Patrik Hoyer and Jyrki Kivinen)

November 1st–December 16th 2016

1 ,



Lectures 3–4:
Linear models & Evaluating performance II

November 8 & 11, 2016

2 ,



Linear models

I We consider the case x ∈ Rp throughout this lecture

I Function f : Rp → R is linear if for some β ∈ Rp it can be
written as

f (x) = β · x =

p∑

j=1

βjxj

and affine if for some β ∈ Rp and a ∈ R we can write

f (x) = β · x + a

I β is called coefficient vector and a is called intercept (or
particularly in machine learning literature, weight vector and
bias)

3 ,



Linear models (2)

I Linear model generally means using an affine function by itself
for regression, or as scoring function for classification

I The learning problem is to determine the parameters β and a
based on data

I Linear regression and classification have been extensively
studies in statistics

4 ,



Univariate linear regression

I As warm-up, we consider linear regression in one-dimensional
case p = 1

I We use square error and want to minimise it on training set
(x1, y1), . . . , (xn, yn)

I Thus, we want to find a, β ∈ R that minimise

E (β, a) =
n∑

i=1

(yi − (βxi + a))2

I This is known as ordinary least squares and can be motivated
as maximum likelihood estimate for (β, a) if we assume

yi = βxi + a + εi

where εi are i.i.d. Gaussian noise with zero mean

5 ,



Univariate linear regression (2)

I We solve the minimisation problem by setting the partial
derivatives to zero

I We denote the solution by (β̂, â)

I We have
∂E (β, a)

∂a
= −2

n∑

i=1

(yi − βxi − a)

and setting this to zero gives

â = ȳ − βx̄

where ȳ = (1/n)
∑

i yi and x̄ = (1/n)
∑

i xi

I This implies in particular that the point (x̄ , ȳ) is on the line
y = β̂x + â

6 ,



Univariate linear regression (3)

I Further,
∂E (β, a)

∂β
= −2

n∑

i=1

xi (yi − βxi − a)

I Plugging in a = â and setting the derivative to zero gives us

n∑

i=1

xi (yi − βxi − ȳ + βx̄) = 0

from which we can solve

β̂ =

∑N
i=1 xi (yi − ȳ)

∑N
i=1 xi (xi − x̄)

7 ,



Univariate linear regression (4)

I Since
n∑

i=1

x̄(yi − ȳ) = x̄

(
n∑

i=1

yi − nȳ

)
= 0

and
n∑

i=1

x̄(xi − x̄) = x̄

(
n∑

i=1

xi − nx̄

)
= 0

we can finally rewrite this as

β̂ =

∑N
i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2

I Notice that we have β̂ = σxy/σxx where σpq is sample
covariance between p and q:

σpq =
1

n − 1

n∑

i=1

(pi − p̄)(qi − q̄)

8 ,



Multivariate linear regression

I We now move to the general case of learning a linear function
Rp → R for arbitrary p

I We use the squared error, which is by far the most commonly
used loss for linear regression

I One potential problem with squared error is its sensitivity to
outliers

I one alternative is absolute loss
∣∣∣y − f̂ (x)

∣∣∣
I computations become trickier with absolute loss

9 ,



Multivariate linear regression (2)

I We assume that the matrix X ∈ Rn×p has n instances xi as its
rows and y ∈ Rn contains the corresponding labels yi

I Terminology: X is the design matrix; elements of xi are
covariates; yi is the response

I We write
y = Xβ + ε

where the residual εi = yi − xi · β indicates error that
coefficient vector β makes on data point (xi , yi )

I Our goal is to find β which minimises the sum of squared
residuals

n∑

i=1

ε2i = ‖ε‖22

10 ,



Multivariate linear regression (3)

I By an argument involving matrix derivatives (or alternatively,
orthogonal projections), we obtain the least squares solution
which can be conveniently expressed using matrix notation.

I With A−1 denoting the matrix inverse of a (square) matrix A,
the solution is given by

β̂ = (XTX)−1XTy

I In R:
library(MASS)

lm.fit = lm(medv ∼ crim, data = Boston)

lm.fit = lm(medv ∼ ., data = D) # all variables

summary(lm.fit)

11 ,



Multivariate linear regression (4)

I If the columns cj of X are linearly independent, the matrix
XTX is of full rank and has an inverse

I For n ≥ p, this is true except for degenerate special cases

I FOr n < p, this is never true, and no unique solution exists
(We’ll talk about the “large p, small n” case later.)

I XTX is a p × p matrix, and inverting it takes O(p3) time

I For very high dimensional problems the computation time may
be prohibitive

12 ,



Useful trick

I It would be simpler to learn just linear functions and not worry
about the intercept term separately

I An easy trick for this is to replace each instance
xi = (xi1, . . . , xip) ∈ Rp by x′i = (1, xi1, . . . , xip) ∈ Rp+1

I Now an affine function f (x) = β · x + a in Rp becomes linear
function g(x′) = β′ · x′ where β′ = (a, β1, . . . , βp)

I If we write the set of instances x1, . . . , xn as an n × p matrix,
this means adding an extra column of ones

13 ,



Useful trick (2)

I For most part we now present algorithms for learning linear
functions (instead of affine)

I In practice, to run them on p-dimensional data, we add the
column of ones and run the algorithm in p + 1 dimensions

I The first component of β then gives the intercept

I However sometimes we might still want to treat the intercept
separately (for example in regularisation)

14 ,



Nonlinear models by transforming the input

I Linear regression can also be used to fit models which are
nonlinear functions of the input

I Example: For fitting a degree 5 polynomial

yi = f (xi ) = β0 + β1xi + β2x
2
i + β3x

3
i + β4x

4
i + β5x

5
i

. . . create the input matrix

X =




1 x1 x21 x31 x41 x51
1 x2 x22 x32 x42 x52
1 x3 x23 x33 x43 x53
1 x4 x24 x34 x44 x54
...

...
...

...
. . .



, and y =




y1

y2

y3

y4
...




15 ,



Nonlinear predictors by transforming the input (2)

I We can also explicitly include some interaction terms, as in

yi = f (xi ) = β0 + β1xi1 + β2xi2 + β3xi1xi2

using the following input matrix:

X =




1 x11 x12 x11x12

1 x21 x22 x21x22

1 x31 x32 x31x32

1 x41 x42 x41x42
...

...
...

...



, and y =




y1

y2

y3

y4
...




I See the book (page 87 onwards) for more on this.

16 ,



Evaluating model performance

17 ,



Evaluating models: Outline

I A fundamental issue in machine learning is that we build
models based on training data, but really care about
performance on new unseen test data

I Generalisation refers to the learned model’s ability to work
well also on unseen data

I good generalisation: what we learned from training data also
applies to test data

I poor generalisation: what seemed to work well on training data
is not so good on test data

18 ,



Goals for this topic

I Familiarity with the basic ideas of evaluating generalisation
performance of (supervised) learning system

I Ability to explain overfitting and underfitting with examples

I Ability to explain with examples the idea of model complexity
and its relation to overfitting and underfitting

I Using separate training, validation and test sets and cross
validation in practice

19 ,



How good is my classifier?

I Apply the learned classifier to the training data?
I a simple model will not be able to fit all the training data

perfectly

I the more complex the model, the better it typically fits

I in particular, in nested model classes such as polynomials of
increasing order, a more complex model always fits better than
a simpler model

I at the extreme case, we could fit a model that is flexible
enough to fit any data perfectly

⇒ does this suggest that a complex model is always better?

I Of course not... the goal of learning is to perform well on new
(unseen) data. How can we test that?

I Note that we almost invariable make the basic assumption
that future data comes from the same source as the training
data. Otherwise we’re doomed!

20 ,



Statistical learning model

Setting the stage:

I We consider supervised learning: goal is to learn a function
f̂ : X → Y.

I During learning, we create f̂ based on training set
{ (x1, y1), . . . , (xN , yN) } where (xi , yi ) ∈ X × Y

I Later we test f̂ on unseen data points
{ (xN+1, yN+1), . . . , (xN+M , yN+M) }

I We have a loss function L : Y ×Y → R and wish to minimise
the average loss on unseen data

1

M

M∑

i=1

L(f̂ (xN+i ), yN+i )

21 ,



Statistical learning model (2)

I Loss function L(ŷ , y): How much does it “cost” us if we
predict ŷ when the outcome if y .

I We’re already familiar with the squared error in regression:

L(ŷ , y) = (ŷ − y)2

I In classification, the most straightforward loss function is the
zero–one loss:

L(ŷ , y) =

{
0, if ŷ = y

1, otherwise

I Asymmetric loss functions can be more sensible in many
situations:

L(ŷ , y) =





0, if ŷ = y

a, if ŷ = 1, y = 0

b, if ŷ = 0, y = 1
22 ,



Statistical learning model (3)

(loss functions continued...)

I A classifier can also make probabilistic predictions and output
a probability distribution p̂ over the values of y .

I In the probabilistic case, an interesting loss function is the
logarithmic loss (or log-loss for short):

L(p̂, y) = − log p̂(y) ≥ 0

I and many more...

I Furthermore, sometimes when minimizing the actual loss
function is hard, we may use a surrogate loss function that is
similar to the actual loss function but easier to manipulate —
we’ll return to this in connection to Support Vector Machines

23 ,



Statistical learning model (4)

I Assume that there is a fixed but unknown probability
distribution P over X × Y such that pairs are (xi , yi ) are
independent samples from it

I We say the data points are independent and identically
distibuted (i.i.d.)

I We wish to minimise the generalisation error (also called risk)
of f̂ , which is the expected loss

E(x ,y)∼P [L(f̂ (x), y)]

where E(x ,y)∼P [·] denotes expectation when a single data
point (x , y) is drawn from P

24 ,



Statistical learning model (5)

I If P were known, this would just be an optimization problem:

min
f̂

E(x ,y)∼P [L(f̂ (x), y)]

I (This problem could be very hard to solve, but it wouldn’t be
a statistical problem.)

I Since P is not known, learning comes to the picture

25 ,



Statistical learning model (6)

I The key is that we have training data drawn from P, so that
we can use it to make more or less accurate inferences about
properties of P

I In particular, based on the law of large numbers (and as we
have seen), the average loss is close to the expected loss with
high probability:

n∑

i=1

1

n
L(f̂ (xi ), yi ) ≈ E(x ,y)∼P [L(f̂ (x), y)]

I For zero–one loss, the difference between the average and the
expected loss can be bounded (with high probability) by
Hoeffding’s inequality; see Exercise 1.1

I ...but remember the problem when there are many models!

26 ,



Overfitting

I Overfitting means creating models that follow too closely the
specifics of the training data, resulting in poor performance on
unseen data

I Overfitting often results from using too complex models with
too little data

I complex models allow high accuracy but require lots of data to
train

I simple models require less training data but are incapable of
modelling complex phenomena accurately

I Choosing the right model complexity is a difficult problem for
which there are many methods (incl. cross validation;
Exercise 1.3)

27 ,



What is model complexity?

I The simplest case is the one where the number of models
available is finite; see again Exercise 1.1

I For parametric models the number of parameters can be used
to obtain a measure of complexity (e.g. linear model in p
dimensions, degree k polynomial)

I Some non-parametric models also have intuitive complexity
measures (e.g. based on the number of nodes in decision tree)

I There are also less obvious parameters that can be used to
control overfitting (e.g. kernel width, parameter k in kNN,
norm of coefficient vector in linear model)

I Mathematical study of various formal notions of complexity is
a vast field; we’ll scratch the surface

28 ,



Error vs flexibility (train and test)

I Left: Data source (black line), data (circles), and three
regression models of increasing complexity; Right: training
and test errors (squared error) of the three models

(Figure 2.9 from the course textbook)

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

29 ,



Error vs flexibility (train and test)

I Typical behaviour: The higher the model complexity (more
flexible model) the lower the error on the training sample.
However, the error curve for a test sample is U-shaped.

(figure from Hastie et al, 2009)
38 2. Overview of Supervised Learning

PSfrag replacements

High Bias

Low Variance

Low Bias

High Variance

P
re

d
ic

ti
o
n

E
rr

o
r

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased,
the variance tends to increase and the squared bias tends to decreases.
The opposite behavior occurs as the model complexity is decreased. For
k-nearest neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

30 ,



Bias-variance tradeoff

I Based on N training datapoints from the distribution, how
close is the learned classifier to the optimal classifier?

Consider multiple trials: repeatedly and independently drawing
N training points from the underlying distribution.

I Bias: how far the average model (over all trials) is from the
real optimal classifier

I Variance: how far a model (based on an individual training
set) tends to be from the average model

I Goal: Low bias and low variance.

I High model complexity ⇒ low bias and high variance
Low model complexity ⇒ high bias and low variance

31 ,



Bias-variance for regression

I Bias and variance have a particular mathematical meaning in
regression with square loss

I Let f̂S : X → R be the model our algorithm produces from
training set S

I Let f∗(x) be the prediction of some “target” function f∗ (say,
Bayes optimal)

I The loss of f̂ with respect to the target on a given point x is

(f∗(x)− f̂S(x))2

I Taking expectation over all possible training sets gives

ES [(f∗(x)− f̂S(x))2]

32 ,



Bias-variance for regression (2)

I Write f̄ (x) = ES [f̂ (x)] for the average prediction of our
algorithm on x

I A straightforward calculation gives the decomposition

ES [(f∗(x)− f̂S(x))2]

= (f∗(x)− f̄S(x))2 + ES [(f̂S(x)− f̄ (x))2]

I bias (f∗(x)− f̄S(x))2 measures how much our “aiming point”
f̄ (x) is off the “target” f∗(x)

I variance ES [(f̂S(x)− f̄ (x))2] measures how much the actual
prediction f̂S(x) wanders around the “aiming point” due to
random training set

33 ,



Using ‘validation’ data to overcome overfitting

1. Split the data into ‘train’ and ‘validation’ subsets:

train validation

available data

2. Fit models with varying complexity on ‘training’ data, e.g.
I regression with different covariate subsets (feature selection)

I decision trees with variable number of nodes

I support vector machines with different regularization
parameters

3. Choose the subset/number-of-nodes/regularization based on
performance on the ‘validation’ set

(An issue: the amount of training data is not the same as in the
original problem. Also: trade-off between the amount of training vs
validation data)

34 ,



Cross-validation

To get more reliable statistics than a single ‘split’ provides, use
K -fold cross-validation (see Exercise 1.3.c):

1. Divide the data into K equal-sized subsets:

available data

1 2 3 4 5

2. For j goes from 1 to K :

2.1 Train the model(s) using all data except that of subset j

2.2 Compute the resulting validation error on the subset j

3. Average the K results

When K = N (i.e. each datapoint is a separate subset) this is
known as leave-one-out cross-validation.

35 ,


