
582631 Introduction to Machine Learning, Fall 2016
Exercise set I
Model solutions

1.

(a) Let’s solve the value of ε for which the upper bound for the considered probability
equals α:

α = 2e−2nε2

e−2nε2 =
α

2
−2nε2 = lnα− ln 2

ε = ±
√

ln 2− lnα

2n
.

The length of the considered interval is 2nε, and by plugging α = 0.05 and n =
10, 100, 1000 into the formula we get:

n 10 100 1000
2nε 8.6 27.2 85.9

(b) Using the union bound and the previous exercise we get:

P (

k⋃
i=1

Ai) ≤
k∑
i=1

P (Ai) ≤ 2ke−2nε2 .

Let’s again solve the value of ε for which this upper bound for equals α:

α = 2ke−2nε2

ε = ±
√

ln(2k)− lnα

2n
.

By plugging α = 0.05, and different values of n and k into the formula, we get the
following interval lengths:

n 10 100 1000
k = 1 2nε 8.6 27.2 85.9
k = 10 2nε 10.9 34.6 109.5
k = 100 2nε 12.9 40.7 128.8

Notice that while the width of the above interval, within which the number of correct
predictions

∑
iXi is likely to be, grows with n at rate

√
n, the corresponding interval

for the proportion of correct predictions n−1
∑

iXi shrinks at rate 1/
√
n:

n 10 100 1000
k = 1 2ε 0.86 0.27 0.09
k = 10 2ε 1.09 0.35 0.11
k = 100 2ε 1.29 0.41 0.13

In summary, the observed accuracy (number of correct prediction divided by n) tends
to get closer and closer to the true accuracy p as the sample size n grows. On the other
hand, as the number of classifiers, k, is increased, the interval grows but as can be
deduced from the formula for ε, the dependency on k is of the order

√
( ln k), which is

very slow (as can also be seen in the above tables).
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