582631 Introduction to Machine Learning, Fall 2016 Exercise set I Model solutions

1.

(a) Let's solve the value of ϵ for which the upper bound for the considered probability equals α :

$$\alpha = 2e^{-2n\epsilon^2}$$
$$e^{-2n\epsilon^2} = \frac{\alpha}{2}$$
$$-2n\epsilon^2 = \ln \alpha - \ln 2$$
$$\epsilon = \pm \sqrt{\frac{\ln 2 - \ln \alpha}{2n}}.$$

The length of the considered interval is $2n\epsilon$, and by plugging $\alpha = 0.05$ and n = 10,100,1000 into the formula we get:

$$\begin{array}{c|ccccc} n & 10 & 100 & 1000 \\ \hline 2n\epsilon & 8.6 & 27.2 & 85.9 \\ \end{array}$$

(b) Using the union bound and the previous exercise we get:

$$P(\bigcup_{i=1}^{k} A_i) \le \sum_{i=1}^{k} P(A_i) \le 2ke^{-2n\epsilon^2}.$$

Let's again solve the value of ϵ for which this upper bound for equals α :

$$\alpha = 2ke^{-2n\epsilon^2}$$
$$\epsilon = \pm \sqrt{\frac{\ln(2k) - \ln \alpha}{2n}}.$$

By plugging $\alpha = 0.05$, and different values of n and k into the formula, we get the following interval lengths:

	n	10	100	1000
k = 1	$2n\epsilon$	8.6	27.2	85.9
k = 10	$2n\epsilon$	10.9	34.6	109.5
k = 100	$2n\epsilon$	12.9	40.7	128.8

Notice that while the width of the above interval, within which the number of correct predictions $\sum_i X_i$ is likely to be, grows with n at rate \sqrt{n} , the corresponding interval for the *proportion* of correct predictions $n^{-1} \sum_i X_i$ shrinks at rate $1/\sqrt{n}$:

	n	10	100	1000
k = 1	2ϵ	0.86	0.27	0.09
k = 10	2ϵ	1.09	0.35	0.11
k = 100	2ϵ	1.29	0.41	0.13

In summary, the observed accuracy (number of correct prediction divided by n) tends to get closer and closer to the true accuracy p as the sample size n grows. On the other hand, as the number of classifiers, k, is increased, the interval grows but as can be deduced from the formula for ϵ , the dependency on k is of the order $\sqrt{(\ln k)}$, which is very slow (as can also be seen in the above tables).