582631 Introduction to Machine Learning, Fall 2016 Exercise set I

Model solutions

1.

(a) Let's solve the value of ϵ for which the upper bound for the considered probability equals α :

$$
\begin{aligned}
\alpha & =2 e^{-2 n \epsilon^{2}} \\
e^{-2 n \epsilon^{2}} & =\frac{\alpha}{2} \\
-2 n \epsilon^{2} & =\ln \alpha-\ln 2 \\
\epsilon & = \pm \sqrt{\frac{\ln 2-\ln \alpha}{2 n}} .
\end{aligned}
$$

The length of the considered interval is $2 n \epsilon$, and by plugging $\alpha=0.05$ and $n=$ $10,100,1000$ into the formula we get:

n	10	100	1000
$2 n \epsilon$	8.6	27.2	85.9

(b) Using the union bound and the previous exercise we get:

$$
P\left(\bigcup_{i=1}^{k} A_{i}\right) \leq \sum_{i=1}^{k} P\left(A_{i}\right) \leq 2 k e^{-2 n \epsilon^{2}}
$$

Let's again solve the value of ϵ for which this upper bound for equals α :

$$
\begin{aligned}
\alpha & =2 k e^{-2 n \epsilon^{2}} \\
\epsilon & = \pm \sqrt{\frac{\ln (2 k)-\ln \alpha}{2 n}} .
\end{aligned}
$$

By plugging $\alpha=0.05$, and different values of n and k into the formula, we get the following interval lengths:

	n	10	100	1000
$k=1$	$2 n \epsilon$	8.6	27.2	85.9
$k=10$	$2 n \epsilon$	10.9	34.6	109.5
$k=100$	$2 n \epsilon$	12.9	40.7	128.8

Notice that while the width of the above interval, within which the number of correct predictions $\sum_{i} X_{i}$ is likely to be, grows with n at rate \sqrt{n}, the corresponding interval for the proportion of correct predictions $n^{-1} \sum_{i} X_{i}$ shrinks at rate $1 / \sqrt{n}$:

	n	10	100	1000
$k=1$	2ϵ	0.86	0.27	0.09
$k=10$	2ϵ	1.09	0.35	0.11
$k=100$	2ϵ	1.29	0.41	0.13

In summary, the observed accuracy (number of correct prediction divided by n) tends to get closer and closer to the true accuracy p as the sample size n grows. On the other hand, as the number of classifiers, k, is increased, the interval grows but as can be deduced from the formula for ϵ, the dependency on k is of the order $\sqrt{(} \ln k)$, which is very slow (as can also be seen in the above tables).

