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Classification: Probabilistic Methods



Logistic regression

> Logistic regression models are linear models for probabilistic
binary classification (so, not really regression where response
is continuous)

» Given input (vector) x, the output is a probability that Y =1

» However, instead of using a linear model directly as in
Pr(Y=1|x)=0"x

we let
Pr(Y =1]|x
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o B v =0lx) P *

» This amounts to the same as

B B exp(8 - x) B 1
P =110 = T ep(@ %) ~ op(-B %) 11




Logistic regression (2)

» For convenience, we use here class labels 0 and 1

» Given probabilistic prediction p(y | x), and assuming instance
x; has already been observed, the conditional likelihood for a

sample point (x;,y;) is

[,)\(Y::l’X,) if y,':1
1—[3(Y:1’X,') if y;ZO

which we write as

BLY =1 %V (1— B(Y =1 x))"



Logistic regression (3)

» Conditional likelihood of sequence of independent samples
(xi,yi), i=1,...,nis then
[T, BY = 1 x)"(1 - (Y = 1| x)*
» we say ‘conditional’ to emphasise that we take x; as given and
only model probability of labels y;

> To maximise conditional likelihood, we can equivalently
maximise conditional log-likelihood

LCL(B)) = lan =1[%)" (1= p(Y =1]x)"")

n

= > (ilnp(Y =1]x)+ (1 —y)In(1—p(Y =1]x;

i=1

» Note that this is the same as log-loss!



Logistic regression (4)
» Maximizing the likelihood (or minimizing log-loss) isn't as
straightforward as in the case of linear regression

» Nevertheless, the problem is convex which means that
gradient-based techniques exist to find the optimum

» Standard techniques in R, Python, Matlab, ...

» Often used with regularisation, as in linear regression
> “ridge”: arg max(LCL(B) — A ||,8||§)
» “lasso”: arg max(LCL(B) — A ||8|l;)

> In particular, if data is linearly separable, non-regularised
solution tends to infinity



Generative vs discriminative learning

» Logistic regression was an example of a discriminative and
probabilistic classifier that directly models the class
distribution P(y | x)

» Another probabilistic way to approach the problem is to use
generative learning that builds a model for the whole joint
distribution P(x,y) — often using the decomposition

P(y)P(x|y)

» Both approaches have their pros and cons:

» Discriminative learning: only solve the task that you need to
solve; may provide better accuracy since focuses on the
specific learning task; optimization tends to be harder

» Generative learning: often more natural to build models for
P(x | y) than for P(y | x); handles missing data more
naturally; optimization often easier



Generative vs discriminative learning (2)

» Estimating the class prior P(y) is usually simple

» For example, in binary classification — this time with
Y € {—1,+1} — we can usually just count the number of
positive examples Pos and negative examples Neg and set
Pos Neg

PlY=41)=——— PlY=-1)=—">—
( +1) Pos + Neg and ( ) Pos + Neg

» Since P(x,y) = P(x | y)P(y), what remains is estimating
P(x | y). In binary classification, we
> use the positive examples to build a model for P(x | Y = +1)

» use the negative examples to build a model for P(x | Y = —1)

» To classify a new data point x, we use the Bayes formula

_ P(x|y)P(y)  P(x|y)P(y)
PO =560 = 5, Px | )P0




Generative vs discriminative learning (3)

Examples of discriminative classifiers:
> logistic regression
> k-NN
> decision trees
» SVM
» multilayer perceptron (MLP)

Examples of generative classifiers:
> naive Bayes (NB)
» linear discriminant analysis (LDA)
» quadratic discriminant analysis (QDA)

We will study all of the above except MLP.



Normal distribution
» For probabilistic models for real-valued features x; € R, one

basic ingredient is the normal or Gaussian distribution

» Recall that for a single real-valued random variable, the
normal distribution has two parameters 1 and o2, and density

» If X has this distribution, then E[X] = p and Var[X] = o2

» For multivariate case x € RP, we shall first consider the case
where individual component x; has normal distribution with
parameters p; and a,-2 and the components are independent:

p(x) =N(x1 | p1,0%) .. . N(xp | pip, 05)
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Normal distribution (2)

> We get

p(x) = N(xi|p1,0%).. . N(xp | pp,05)
ot o (_(Xj—uj)2>
j=1 2702 2Uj

(27)P/20y ... 0p

- X

1 . (1
1 (]
(rpr2z 22

where 1 = (p1,...,1p) € RP and X € RP*P is a diagonal
matrix with 6%, ..., 02 on the diagonal and || is determinant
of X
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Normal distribution (3)

» More generally, let p € RP, and let ¥ € RP*P be
» symmetric: X1 =¥
» positive definite: xTEx >0 forallx e R—{0}

> We then define p-dimensional Gaussian density with
parameter p and ¥ as

1 1 _
Nl B = e (-3 - )

» If X is diagonal, we get the special case where x; are
independent
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Normal distribution (4)

» To understand the multivariate normal distribution, consider a
surface of constant density:

S={xeRP|IN(K|pX)=a}
for some a
» By definition of N, this can be written as
S={xeRP| (x —p)TZ " (x— p) = b}
for some b

» Because ¥ is symmetric and positive definite, so is ¥, and
this set is an ellipsoid with centre p
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Normal distribution (5)

» More specifically, since ¥ is symmetric and positive definite, it
has an Eigenvalue decomposition

Y = UNUT

where A € RP*P is diagonal and U € RT is orthogonal
(UT = U™1), and further

Yy l=untut
» We then know from analytic geometry that for the ellipsoid

S={xeRP|(x—p)" T (x—p)=b}

» the directions of the axes are given by the column vectors of U
(Eigenvectors of ¥)

> the squared lengths of the axes are given by the elements of A
(Eigenvalues of X)
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Normal distribution (6)

» Let X = (Xi,...,Xp) have normal distribution with
parameters @ and -

» Then E[X] = p and E[(X; — 1/ )(Xs — ps)] = Xrs

» Hence, we call the parameter p the mean and ¥ the
covariance matrix
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Normal distribution (7)

> Let x1,...,X,, where x; = (Xj1,...,Xjp), be nindependent
samples from a p-dimensional normal distribution with
unknown mean p and covariance

» The maximum likelihood estimates

[T T
are given by
X 1¢
T i=1 o
R 1o
Y = - ;(Xi,r — fir)(Xis — fls)
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Gaussians in classification

» LDA and QDA are obtained by modeling positive and negative
examples both with their own Gaussian:

px| Y =+1) = N(x|py,XTy)
p(x| Y =-1) = N(x|p-,x))

where 1+ and ¥4 are obtained for example as maximum
likelihood estimates

» Decision boundary is given by
N | ps, Zy) =N(x [ p,X-)
or equivalently
NN (x| py, Zy) =InN(x [ p, Z-)
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Gaussians in classification (2)

» By substituting the formula for AV into
InN(x | p’-i-vz-‘r) = |n/\f(x | H_,Z_)
and simplifying we get

x|

=0
pary

(x— 1) TP (- ) — (x— ) TE T (k- p)

» If Xy =X _ thisis a linear equation, so the decision boundary
is a hyperplane: LDA

» In general case this is a quadratic surface: QDA

» In QDA, decision regions may be non-connected
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