582631 — 5 credits

Introduction to Machine Learning

Lecturer: Teemu Roos Assistant: Ville Hyvönen

Department of Computer Science University of Helsinki

(based in part on material by Patrik Hoyer and Jyrki Kivinen)

November 1st-December 16th 2016

L,

Classification: Probabilistic Methods

Logistic regression

- Logistic regression models are linear models for probabilistic binary classification (so, not really regression where response is continuous)
- lacktriangle Given input (vector) f x, the output is a probability that Y=1
- ▶ However, instead of using a linear model directly as in

$$\Pr(Y=1\mid \mathbf{x})=\boldsymbol{\beta}\cdot\mathbf{x}$$

we let

$$\log \frac{\Pr(Y=1 \mid \mathbf{x})}{\Pr(Y=0 \mid \mathbf{x})} = \beta \cdot \mathbf{x}$$

This amounts to the same as

$$\Pr(Y = 1 \mid \mathbf{x}) = \frac{\exp(\boldsymbol{\beta} \cdot \mathbf{x})}{1 + \exp(\boldsymbol{\beta} \cdot \mathbf{x})} = \frac{1}{\exp(-\boldsymbol{\beta} \cdot \mathbf{x}) + 1}$$

Logistic regression (2)

- ▶ For convenience, we use here class labels 0 and 1
- ▶ Given probabilistic prediction $\hat{p}(y \mid \mathbf{x})$, and assuming instance \mathbf{x}_i has already been observed, the **conditional likelihood** for a sample point (\mathbf{x}_i, y_i) is

$$\hat{p}(Y = 1 \mid \mathbf{x}_i)$$
 if $y_i = 1$
 $1 - \hat{p}(Y = 1 \mid \mathbf{x}_i)$ if $y_i = 0$

which we write as

$$\hat{p}(Y = 1 \mid \mathbf{x}_i)^{y_i} (1 - \hat{p}(Y = 1 \mid \mathbf{x}_i))^{1 - y_i}$$

Logistic regression (3)

- Conditional likelihood of sequence of independent samples (x_i, y_i) , i = 1, ..., n is then $\prod_{i=1}^{n} \hat{p}(Y = 1 \mid \mathbf{x}_i)^{y_i} (1 \hat{p}(Y = 1 \mid \mathbf{x}_i))^{1-y_i}$
 - we say 'conditional' to emphasise that we take x_i as given and only model probability of labels y_i
- To maximise conditional likelihood, we can equivalently maximise conditional log-likelihood

$$\begin{aligned} \mathsf{LCL}(\beta)) &= & \ln \prod_{i=1}^{n} \hat{\rho}(Y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - \hat{\rho}(Y = 1 \mid \mathbf{x}_{i})^{1 - y_{i}}) \\ &= & \sum_{i=1}^{n} (y_{i} \ln \hat{\rho}(Y = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \ln (1 - \hat{\rho}(Y = 1 \mid \mathbf{x}_{i})) \end{aligned}$$

▶ Note that this is the same as log-loss!

Logistic regression (4)

- Maximizing the likelihood (or minimizing log-loss) isn't as straightforward as in the case of linear regression
- Nevertheless, the problem is convex which means that gradient-based techniques exist to find the optimum
- Standard techniques in R, Python, Matlab, ...
- Often used with regularisation, as in linear regression
 - "ridge": arg max(LCL(β) $\lambda \|\beta\|_2^2$)
 - "lasso": arg max(LCL($oldsymbol{eta}$) $\lambda \, \|oldsymbol{eta}\|_1$)
- ► In particular, if data is linearly separable, non-regularised solution tends to infinity

Generative vs discriminative learning

- Logistic regression was an example of a discriminative and probabilistic classifier that directly models the class distribution P(y | x)
- Another probabilistic way to approach the problem is to use **generative** learning that builds a model for the whole joint distribution $P(\mathbf{x}, y)$ often using the decomposition $P(y)P(\mathbf{x} \mid y)$
- Both approaches have their pros and cons:
 - Discriminative learning: only solve the task that you need to solve; may provide better accuracy since focuses on the specific learning task; optimization tends to be harder
 - Generative learning: often more natural to build models for $P(\mathbf{x} \mid y)$ than for $P(y \mid \mathbf{x})$; handles missing data more naturally; optimization often easier

Generative vs discriminative learning (2)

- ▶ Estimating the *class prior* P(y) is usually simple
- For example, in binary classification this time with $Y \in \{-1, +1\}$ we can usually just count the number of positive examples Pos and negative examples Neg and set

$$P(Y = +1) = \frac{Pos}{Pos + Neg}$$
 and $P(Y = -1) = \frac{Neg}{Pos + Neg}$

- Since $P(\mathbf{x}, y) = P(\mathbf{x} \mid y)P(y)$, what remains is estimating $P(\mathbf{x} \mid y)$. In binary classification, we
 - use the positive examples to build a model for $P(\mathbf{x} \mid Y = +1)$
 - lacktriangleright use the negative examples to build a model for $P(\mathbf{x}\mid Y=-1)$
- ▶ To classify a new data point **x**, we use the Bayes formula

$$P(y \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid y)P(y)}{P(\mathbf{x})} = \frac{P(\mathbf{x} \mid y)P(y)}{\sum_{y'} P(\mathbf{x} \mid y')P(y')}$$

Generative vs discriminative learning (3)

Examples of discriminative classifiers:

- logistic regression
- ► k-NN
- decision trees
- SVM
- multilayer perceptron (MLP)

Examples of generative classifiers:

- naive Bayes (NB)
- linear discriminant analysis (LDA)
- quadratic discriminant analysis (QDA)

We will study all of the above except MLP.

Normal distribution

- ▶ For probabilistic models for real-valued features $x_i \in \mathbb{R}$, one basic ingredient is the *normal* or *Gaussian* distribution
- ▶ Recall that for a single real-valued random variable, the normal distribution has two parameters μ and σ^2 , and density

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- ▶ If X has this distribution, then $E[X] = \mu$ and $Var[X] = \sigma^2$
- For multivariate case $\mathbf{x} \in \mathbb{R}^p$, we shall first consider the case where individual component x_i has normal distribution with parameters μ_i and σ_i^2 and the components are independent:

$$p(\mathbf{x}) = \mathcal{N}(x_1 \mid \mu_1, \sigma_1^2) \dots \mathcal{N}(x_p \mid \mu_p, \sigma_d^2)$$

10,

Normal distribution (2)

► We get

$$p(\mathbf{x}) = \mathcal{N}(x_1 \mid \mu_1, \sigma_1^2) \dots \mathcal{N}(x_p \mid \mu_p, \sigma_p^2)$$

$$= \prod_{j=1}^p \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

$$= \frac{1}{(2\pi)^{p/2}\sigma_1 \dots \sigma_p} \exp\left(-\frac{1}{2}\sum_{j=1}^p \frac{(x_j - \mu_j)^2}{\sigma_j^2}\right)$$

$$= \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

where $\mu = (\mu_1, \dots, \mu_p) \in \mathbb{R}^p$ and $\Sigma \in \mathbb{R}^{p \times p}$ is a diagonal matrix with $\sigma_1^2, \dots, \sigma_p^2$ on the diagonal and $|\Sigma|$ is determinant of Σ

Normal distribution (3)

- ▶ More generally, let $\mu \in \mathbb{R}^p$, and let $\Sigma \in \mathbb{R}^{p \times p}$ be
 - symmetric: $\Sigma^T = \Sigma$
 - positive definite: $\mathbf{x}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R} \{ 0 \}$
- ightharpoonup We then define p-dimensional Gaussian density with parameter μ and Σ as

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2} \left|\boldsymbol{\Sigma}\right|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

▶ If Σ is diagonal, we get the special case where x_j are independent

Normal distribution (4)

To understand the multivariate normal distribution, consider a surface of constant density:

$$S = \{ \mathbf{x} \in \mathbb{R}^p \mid \mathcal{N}(\mathbf{x} \mid \mu, \Sigma) = a \}$$

for some a

b By definition of \mathcal{N} , this can be written as

$$S = \left\{ \mathbf{x} \in \mathbb{R}^p \mid (\mathbf{x} - \mu)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) = b \right\}$$

for some b

▶ Because Σ is symmetric and positive definite, so is Σ^{-1} , and this set is an ellipsoid with centre μ

Normal distribution (5)

ightharpoonup More specifically, since Σ is symmetric and positive definite, it has an Eigenvalue decomposition

$$\Sigma = U \Lambda U^{\mathrm{T}}$$

where $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal and $U \in \mathbb{R}^{T}$ is orthogonal $(U^{T} = U^{-1})$, and further

$$\Sigma^{-1} = U \Lambda^{-1} U^{\mathrm{T}}$$

We then know from analytic geometry that for the ellipsoid

$$S = \left\{ \mathbf{x} \in \mathbb{R}^p \mid (\mathbf{x} - \mu)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) = b \right\}$$

- the directions of the axes are given by the column vectors of U (Eigenvectors of Σ)
- the squared lengths of the axes are given by the elements of Λ (Eigenvalues of Σ)

Normal distribution (6)

- Let $\mathbf{X} = (X_1, \dots, X_p)$ have normal distribution with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$
- ▶ Then $\mathrm{E}[\mathbf{X}] = \boldsymbol{\mu}$ and $\mathrm{E}[(X_r \mu_r)(X_s \mu_s)] = \Sigma_{rs}$
- ightharpoonup Hence, we call the parameter ho the mean and ho the covariance matrix

Normal distribution (7)

- Let $\mathbf{x}_1, \dots, \mathbf{x}_n$, where $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p})$, be n independent samples from a p-dimensional normal distribution with unknown mean μ and covariance Σ
- ► The maximum likelihood estimates

$$(\hat{\mu},\hat{\Sigma}) = rg \max_{oldsymbol{\mu},\Sigma} \prod_{i=1}^n \mathcal{N}(\mathbf{x}_i \mid oldsymbol{\mu},\Sigma)$$

are given by

$$\hat{\mu}_{r} = \frac{1}{n} \sum_{i=1}^{n} x_{i,r}$$

$$\hat{\Sigma}_{rs} = \frac{1}{n} \sum_{i=1}^{n} (x_{i,r} - \hat{\mu}_{r})(x_{i,s} - \hat{\mu}_{s})$$

Gaussians in classification

► LDA and QDA are obtained by modeling positive and negative examples both with their own Gaussian:

$$p(\mathbf{x} \mid Y = +1) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_+, \boldsymbol{\Sigma}_+)$$

 $p(\mathbf{x} \mid Y = -1) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_-, \boldsymbol{\Sigma}_-))$

where μ_{\pm} and Σ_{\pm} are obtained for example as maximum likelihood estimates

Decision boundary is given by

$$\mathcal{N}(\mathsf{x} \mid \boldsymbol{\mu}_+, \boldsymbol{\Sigma}_+) = \mathcal{N}(\mathsf{x} \mid \boldsymbol{\mu}_-, \boldsymbol{\Sigma}_-)$$

or equivalently

$$\ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_+, \Sigma_+) = \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_-, \Sigma_-)$$

Gaussians in classification (2)

lacktriangle By substituting the formula for ${\cal N}$ into

$$\ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_+, \boldsymbol{\Sigma}_+) = \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_-, \boldsymbol{\Sigma}_-)$$

and simplifying we get

$$(\mathbf{x} - \boldsymbol{\mu}_{+})^{T} \Sigma_{+}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{+}) - (\mathbf{x} - \boldsymbol{\mu}_{-})^{T} \Sigma_{-}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{-}) + \ln \frac{|\Sigma_{-}|}{|\Sigma_{+}|} = 0$$

- ▶ If $\Sigma_+ = \Sigma_-$ this is a linear equation, so the decision boundary is a hyperplane: **LDA**
- In general case this is a quadratic surface: QDA
- ▶ In QDA, decision regions may be non-connected