582631 - 5 credits
 Introduction to Machine Learning

Lecturer: Teemu Roos
Assistant: Ville Hyvönen

Department of Computer Science University of Helsinki
(based in part on material by Patrik Hoyer and Jyrki Kivinen)

November 1st-December 16th 2016

Classification: Probabilistic Methods

Logistic regression

- Logistic regression models are linear models for probabilistic binary classification (so, not really regression where response is continuous)
- Given input (vector) \mathbf{x}, the output is a probability that $Y=1$
- However, instead of using a linear model directly as in

$$
\operatorname{Pr}(Y=1 \mid \mathbf{x})=\boldsymbol{\beta} \cdot \mathbf{x}
$$

we let

$$
\log \frac{\operatorname{Pr}(Y=1 \mid \mathbf{x})}{\operatorname{Pr}(Y=0 \mid \mathbf{x})}=\boldsymbol{\beta} \cdot \mathbf{x}
$$

- This amounts to the same as

$$
\operatorname{Pr}(Y=1 \mid \mathbf{x})=\frac{\exp (\boldsymbol{\beta} \cdot \mathbf{x})}{1+\exp (\boldsymbol{\beta} \cdot \mathbf{x})}=\frac{1}{\exp (-\boldsymbol{\beta} \cdot \mathbf{x})+1}
$$

Logistic regression (2)

- For convenience, we use here class labels 0 and 1
- Given probabilistic prediction $\hat{p}(y \mid \mathbf{x})$, and assuming instance \mathbf{x}_{i} has already been observed, the conditional likelihood for a sample point $\left(\mathbf{x}_{i}, y_{i}\right)$ is

$$
\begin{array}{rll}
\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right) & \text { if } & y_{i}=1 \\
1-\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right) & \text { if } & y_{i}=0
\end{array}
$$

which we write as

$$
\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)^{y_{i}}\left(1-\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)\right)^{1-y_{i}}
$$

Logistic regression (3)

- Conditional likelihood of sequence of independent samples $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ is then
$\prod_{i=1}^{n} \hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)^{y_{i}}\left(1-\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)\right)^{1-y_{i}}$
- we say 'conditional' to emphasise that we take \mathbf{x}_{i} as given and only model probability of labels y_{i}
- To maximise conditional likelihood, we can equivalently maximise conditional log-likelihood

$$
\begin{aligned}
\operatorname{LCL}(\boldsymbol{\beta})) & =\ln \prod_{i=1}^{n} \hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)^{y_{i}}\left(1-\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)^{1-y_{i}}\right) \\
& =\sum_{i=1}^{n}\left(y_{i} \ln \hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \ln \left(1-\hat{p}\left(Y=1 \mid \mathbf{x}_{i}\right)\right.\right.
\end{aligned}
$$

- Note that this is the same as log-loss!

Logistic regression (4)

- Maximizing the likelihood (or minimizing log-loss) isn't as straightforward as in the case of linear regression
- Nevertheless, the problem is convex which means that gradient-based techniques exist to find the optimum
- Standard techniques in R, Python, Matlab, ...
- Often used with regularisation, as in linear regression
- "ridge": $\arg \max \left(\operatorname{LCL}(\boldsymbol{\beta})-\lambda\|\boldsymbol{\beta}\|_{2}^{2}\right)$
- "lasso": $\arg \max \left(\mathrm{LCL}(\boldsymbol{\beta})-\lambda\|\boldsymbol{\beta}\|_{1}\right)$
- In particular, if data is linearly separable, non-regularised solution tends to infinity

Generative vs discriminative learning

- Logistic regression was an example of a discriminative and probabilistic classifier that directly models the class distribution $P(y \mid \mathbf{x})$
- Another probabilistic way to approach the problem is to use generative learning that builds a model for the whole joint distribution $P(\mathbf{x}, y)$ - often using the decomposition $P(y) P(\mathbf{x} \mid y)$
- Both approaches have their pros and cons:
- Discriminative learning: only solve the task that you need to solve; may provide better accuracy since focuses on the specific learning task; optimization tends to be harder
- Generative learning: often more natural to build models for $P(\mathbf{x} \mid y)$ than for $P(y \mid \mathbf{x})$; handles missing data more naturally; optimization often easier

Generative vs discriminative learning (2)

- Estimating the class prior $P(y)$ is usually simple
- For example, in binary classification - this time with $Y \in\{-1,+1\}$ - we can usually just count the number of positive examples Pos and negative examples Neg and set

$$
P(Y=+1)=\frac{P o s}{P o s+N e g} \quad \text { and } \quad P(Y=-1)=\frac{N e g}{P o s+N e g}
$$

- Since $P(\mathbf{x}, y)=P(\mathbf{x} \mid y) P(y)$, what remains is estimating $P(\mathbf{x} \mid y)$. In binary classification, we
- use the positive examples to build a model for $P(\mathbf{x} \mid Y=+1)$
- use the negative examples to build a model for $P(\mathbf{x} \mid Y=-1)$
- To classify a new data point \mathbf{x}, we use the Bayes formula

$$
P(y \mid \mathbf{x})=\frac{P(\mathbf{x} \mid y) P(y)}{P(\mathbf{x})}=\frac{P(\mathbf{x} \mid y) P(y)}{\sum_{y^{\prime}} P\left(\mathbf{x} \mid y^{\prime}\right) P\left(y^{\prime}\right)}
$$

Generative vs discriminative learning (3)

Examples of discriminative classifiers:

- logistic regression
- k-NN
- decision trees
- SVM
- multilayer perceptron (MLP)

Examples of generative classifiers:

- naive Bayes (NB)
- linear discriminant analysis (LDA)
- quadratic discriminant analysis (QDA)

We will study all of the above except MLP.

Normal distribution

- For probabilistic models for real-valued features $x_{i} \in \mathbb{R}$, one basic ingredient is the normal or Gaussian distribution
- Recall that for a single real-valued random variable, the normal distribution has two parameters μ and σ^{2}, and density

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- If X has this distribution, then $\mathrm{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$
- For multivariate case $\mathbf{x} \in \mathbb{R}^{p}$, we shall first consider the case where individual component x_{i} has normal distribution with parameters μ_{i} and σ_{i}^{2} and the components are independent:

$$
p(\mathbf{x})=\mathcal{N}\left(x_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) \ldots \mathcal{N}\left(x_{p} \mid \mu_{p}, \sigma_{d}^{2}\right)
$$

Normal distribution (2)

- We get

$$
\begin{aligned}
p(\mathbf{x}) & =\mathcal{N}\left(x_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) \ldots \mathcal{N}\left(x_{p} \mid \mu_{p}, \sigma_{p}^{2}\right) \\
& =\prod_{j=1}^{p} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left(-\frac{\left(x_{j}-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right) \\
& =\frac{1}{(2 \pi)^{p / 2} \sigma_{1} \ldots \sigma_{p}} \exp \left(-\frac{1}{2} \sum_{j=1}^{p} \frac{\left(x_{j}-\mu_{j}\right)^{2}}{\sigma_{j}^{2}}\right) \\
& =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
\end{aligned}
$$

where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right) \in \mathbb{R}^{p}$ and $\Sigma \in \mathbb{R}^{p \times p}$ is a diagonal matrix with $\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}$ on the diagonal and $|\Sigma|$ is determinant of Σ

Normal distribution (3)

- More generally, let $\boldsymbol{\mu} \in \mathbb{R}^{p}$, and let $\Sigma \in \mathbb{R}^{p \times p}$ be
- symmetric: $\Sigma^{\mathrm{T}}=\Sigma$
- positive definite: $\mathbf{x}^{\mathrm{T}} \Sigma \mathbf{x}>0$ for all $\mathbf{x} \in \mathbb{R}-\{0\}$
- We then define p-dimensional Gaussian density with parameter $\boldsymbol{\mu}$ and Σ as

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- If Σ is diagonal, we get the special case where x_{j} are independent

Normal distribution (4)

- To understand the multivariate normal distribution, consider a surface of constant density:

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{p} \mid \mathcal{N}(\mathbf{x} \mid \mu, \Sigma)=a\right\}
$$

for some a

- By definition of \mathcal{N}, this can be written as

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{p} \mid(\mathbf{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\mu)=b\right\}
$$

for some b

- Because Σ is symmetric and positive definite, so is Σ^{-1}, and this set is an ellipsoid with centre μ

Normal distribution (5)

- More specifically, since Σ is symmetric and positive definite, it has an Eigenvalue decomposition

$$
\Sigma=U \wedge U^{\mathrm{T}}
$$

where $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal and $U \in \mathbb{R}^{\mathrm{T}}$ is orthogonal $\left(U^{\mathrm{T}}=U^{-1}\right)$, and further

$$
\Sigma^{-1}=U \Lambda^{-1} U^{\mathrm{T}}
$$

- We then know from analytic geometry that for the ellipsoid

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{p} \mid(\mathbf{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\mu)=b\right\}
$$

- the directions of the axes are given by the column vectors of U (Eigenvectors of Σ)
- the squared lengths of the axes are given by the elements of Λ (Eigenvalues of Σ)

Normal distribution (6)

- Let $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ have normal distribution with parameters $\boldsymbol{\mu}$ and Σ
- Then $\mathrm{E}[\mathbf{X}]=\boldsymbol{\mu}$ and $\mathrm{E}\left[\left(X_{r}-\mu_{r}\right)\left(X_{s}-\mu_{s}\right)\right]=\Sigma_{r s}$
- Hence, we call the parameter $\boldsymbol{\mu}$ the mean and Σ the covariance matrix

Normal distribution (7)

- Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, where $\mathbf{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, p}\right)$, be n independent samples from a p-dimensional normal distribution with unknown mean $\boldsymbol{\mu}$ and covariance Σ
- The maximum likelihood estimates

$$
(\hat{\boldsymbol{\mu}}, \hat{\Sigma})=\underset{\mu, \Sigma}{\arg \max } \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}, \Sigma\right)
$$

are given by

$$
\begin{aligned}
\hat{\mu}_{r} & =\frac{1}{n} \sum_{i=1}^{n} x_{i, r} \\
\hat{\Sigma}_{r s} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i, r}-\hat{\mu}_{r}\right)\left(x_{i, s}-\hat{\mu}_{s}\right)
\end{aligned}
$$

Gaussians in classification

- LDA and QDA are obtained by modeling positive and negative examples both with their own Gaussian:

$$
\begin{aligned}
& p(\mathbf{x} \mid Y=+1)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{+}, \Sigma_{+}\right) \\
& \left.p(\mathbf{x} \mid Y=-1)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{-}, \Sigma_{-}\right)\right)
\end{aligned}
$$

where $\boldsymbol{\mu}_{ \pm}$and $\Sigma_{ \pm}$are obtained for example as maximum likelihood estimates

- Decision boundary is given by

$$
\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{+}, \Sigma_{+}\right)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{-}, \Sigma_{-}\right)
$$

or equivalently

$$
\ln \mathcal{N}\left(\mathbf{x} \mid \mu_{+}, \Sigma_{+}\right)=\ln \mathcal{N}\left(\mathbf{x} \mid \mu_{-}, \Sigma_{-}\right)
$$

Gaussians in classification (2)

- By substituting the formula for \mathcal{N} into

$$
\ln \mathcal{N}\left(\mathbf{x} \mid \mu_{+}, \Sigma_{+}\right)=\ln \mathcal{N}\left(\mathbf{x} \mid \mu_{-}, \Sigma_{-}\right)
$$

and simplifying we get

$$
\left(\mathbf{x}-\boldsymbol{\mu}_{+}\right)^{T} \Sigma_{+}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{+}\right)-\left(\mathbf{x}-\boldsymbol{\mu}_{-}\right)^{T} \Sigma_{-}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{-}\right)+\ln \frac{\left|\Sigma_{-}\right|}{\left|\Sigma_{+}\right|}=0
$$

- If $\Sigma_{+}=\Sigma_{-}$this is a linear equation, so the decision boundary is a hyperplane: LDA
- In general case this is a quadratic surface: QDA
- In QDA, decision regions may be non-connected

