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Classification: Probabilistic Methods
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Logistic regression

I Logistic regression models are linear models for probabilistic
binary classification (so, not really regression where response
is continuous)

I Given input (vector) x, the output is a probability that Y = 1

I However, instead of using a linear model directly as in

Pr(Y = 1 | x) = � · x

we let

log
Pr(Y = 1 | x)
Pr(Y = 0 | x) = � · x

I This amounts to the same as

Pr(Y = 1 | x) = exp(� · x)
1 + exp(� · x) =

1

exp(�� · x) + 1
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Logistic regression (2)

I For convenience, we use here class labels 0 and 1

I Given probabilistic prediction p̂(y | x), and assuming instance
x

i

has already been observed, the conditional likelihood for a
sample point (x

i

, y
i

) is

p̂(Y = 1 | x
i

) if y

i

= 1

1� p̂(Y = 1 | x
i

) if y

i

= 0

which we write as

p̂(Y = 1 | x
i

)yi (1� p̂(Y = 1 | x
i

))1�y

i
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Logistic regression (3)

I Conditional likelihood of sequence of independent samples
(x

i

, y
i

), i = 1, . . . , n is thenQ
n

i=1 p̂(Y = 1 | x
i

)yi (1� p̂(Y = 1 | x
i

))1�y

i

I we say ‘conditional’ to emphasise that we take x

i

as given and
only model probability of labels y

i

I To maximise conditional likelihood, we can equivalently
maximise conditional log-likelihood

LCL(�)) = ln
nY

i=1

p̂(Y = 1 | x
i

)yi (1� p̂(Y = 1 | x
i

)1�y

i )

=
nX

i=1

(y
i

ln p̂(Y = 1 | x
i

) + (1� y

i

) ln(1� p̂(Y = 1 | x
i

)))

I Note that this is the same as log-loss!
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Logistic regression (4)

I Maximizing the likelihood (or minimizing log-loss) isn’t as
straightforward as in the case of linear regression

I Nevertheless, the problem is convex which means that
gradient-based techniques exist to find the optimum

I Standard techniques in R, Python, Matlab, ...

I Often used with regularisation, as in linear regression
I “ridge”: arg max(LCL(�)� � k�k22)
I “lasso”: arg max(LCL(�)� � k�k1)

I In particular, if data is linearly separable, non-regularised
solution tends to infinity
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Generative vs discriminative learning

I Logistic regression was an example of a discriminative and
probabilistic classifier that directly models the class
distribution P(y | x)

I Another probabilistic way to approach the problem is to use
generative learning that builds a model for the whole joint
distribution P(x, y) — often using the decomposition
P(y)P(x | y)

I Both approaches have their pros and cons:
I Discriminative learning: only solve the task that you need to

solve; may provide better accuracy since focuses on the
specific learning task; optimization tends to be harder

I Generative learning: often more natural to build models for
P(x | y) than for P(y | x); handles missing data more
naturally; optimization often easier
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Generative vs discriminative learning (2)

I Estimating the class prior P(y) is usually simple

I For example, in binary classification — this time with
Y 2 {�1,+1} — we can usually just count the number of
positive examples Pos and negative examples Neg and set

P(Y = +1) =
Pos

Pos+ Neg

and P(Y = �1) =
Neg

Pos+ Neg

I Since P(x, y) = P(x | y)P(y), what remains is estimating
P(x | y). In binary classification, we

I use the positive examples to build a model for P(x | Y = +1)
I use the negative examples to build a model for P(x | Y = �1)

I To classify a new data point x, we use the Bayes formula

P(y | x) = P(x | y)P(y)
P(x)

=
P(x | y)P(y)P
y

0 P(x | y 0)P(y 0)
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Generative vs discriminative learning (3)

Examples of discriminative classifiers:

I logistic regression

I k-NN

I decision trees

I SVM

I multilayer perceptron (MLP)

Examples of generative classifiers:

I naive Bayes (NB)

I linear discriminant analysis (LDA)

I quadratic discriminant analysis (QDA)

We will study all of the above except MLP.
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Normal distribution

I For probabilistic models for real-valued features x
i

2 R, one
basic ingredient is the normal or Gaussian distribution

I Recall that for a single real-valued random variable, the
normal distribution has two parameters µ and �2, and density

N (x | µ,�2) =
1p
2⇡�2

exp

✓
�(x � µ)2

2�2

◆

I If X has this distribution, then E[X ] = µ and Var[X ] = �2

I For multivariate case x 2 Rp, we shall first consider the case
where individual component x

i

has normal distribution with
parameters µ

i

and �2
i

and the components are independent:

p(x) = N (x1 | µ1,�
2
1) . . .N (x

p

| µ
p

,�2
d

)
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Normal distribution (2)

I We get

p(x) = N (x1 | µ1,�
2
1) . . .N (x

p

| µ
p

,�2
p

)

=
pY

j=1

1q
2⇡�2

j

exp

 
�
(x

j

� µ
j

)2

2�2
j

!

=
1

(2⇡)p/2�1 . . .�p
exp

0

@�1

2

pX

j=1

(x
j

� µ
j

)2

�2
j

1

A

=
1

(2⇡)p/2 |⌃|1/2
exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆

where µ = (µ1, . . . , µp

) 2 Rp and ⌃ 2 Rp⇥p is a diagonal
matrix with �2

1, . . . ,�
2
p

on the diagonal and |⌃| is determinant
of ⌃
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Normal distribution (3)

I More generally, let µ 2 Rp, and let ⌃ 2 Rp⇥p be
I symmetric: ⌃T = ⌃
I positive definite: xT⌃x > 0 for all x 2 R� { 0 }

I We then define p-dimensional Gaussian density with
parameter µ and ⌃ as

N (x | µ,⌃) = 1

(2⇡)p/2 |⌃|1/2
exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆

I If ⌃ is diagonal, we get the special case where x

j

are
independent
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Normal distribution (4)

I To understand the multivariate normal distribution, consider a
surface of constant density:

S = { x 2 Rp | N (x | µ,⌃) = a }

for some a

I By definition of N , this can be written as

S =
�
x 2 Rp | (x� µ)T⌃�1(x� µ) = b

 

for some b

I Because ⌃ is symmetric and positive definite, so is ⌃�1, and
this set is an ellipsoid with centre µ
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Normal distribution (5)

I More specifically, since ⌃ is symmetric and positive definite, it
has an Eigenvalue decomposition

⌃ = U⇤UT

where ⇤ 2 Rp⇥p is diagonal and U 2 RT is orthogonal
(UT = U

�1), and further

⌃�1 = U⇤�1
U

T

I We then know from analytic geometry that for the ellipsoid

S =
�
x 2 Rp | (x� µ)T⌃�1(x� µ) = b

 

I the directions of the axes are given by the column vectors of U
(Eigenvectors of ⌃)

I the squared lengths of the axes are given by the elements of ⇤
(Eigenvalues of ⌃)
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Normal distribution (6)

I Let X = (X1, . . . ,Xp

) have normal distribution with
parameters µ and ⌃

I Then E[X] = µ and E[(X
r

� µ
r

)(X
s

� µ
s

)] = ⌃
rs

I Hence, we call the parameter µ the mean and ⌃ the
covariance matrix
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Normal distribution (7)

I Let x1, . . . , xn, where x

i

= (x
i ,1, . . . , xi ,p), be n independent

samples from a p-dimensional normal distribution with
unknown mean µ and covariance ⌃

I The maximum likelihood estimates

(µ̂, ⌃̂) = arg max
µ,⌃

nY

i=1

N (x
i

| µ,⌃)

are given by

µ̂
r

=
1

n

nX

i=1

x

i ,r

⌃̂
rs

=
1

n

nX

i=1

(x
i ,r � µ̂

r

)(x
i ,s � µ̂

s

)
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Gaussians in classification

I LDA and QDA are obtained by modeling positive and negative
examples both with their own Gaussian:

p(x | Y = +1) = N (x | µ+,⌃+)

p(x | Y = �1) = N (x | µ�,⌃�))

where µ± and ⌃± are obtained for example as maximum
likelihood estimates

I Decision boundary is given by

N (x | µ+,⌃+) = N (x | µ�,⌃�)

or equivalently

lnN (x | µ+,⌃+) = lnN (x | µ�,⌃�)
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Gaussians in classification (2)

I By substituting the formula for N into

lnN (x | µ+,⌃+) = lnN (x | µ�,⌃�)

and simplifying we get

(x�µ+)
T⌃�1

+ (x�µ+)�(x�µ�)
T⌃�1

� (x�µ�)+ln
|⌃�|
|⌃+|

= 0

I If ⌃+ = ⌃� this is a linear equation, so the decision boundary
is a hyperplane: LDA

I In general case this is a quadratic surface: QDA

I In QDA, decision regions may be non-connected
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