
582631 Introduction to Machine Learning, Fall 2016
Exercise set 3 or: How I Learned to Stop Worrying and Love the
Normal Distribution

Due November 24th–25th. NB: Deadline for returning solutions my email (in case you can’t attend a session)
is 12:15 on Friday. There may be changes in the exercise sessions — we’ll keep you informed.

Problem 1 (3 + 3 + 3 + 3 points)

(a) (3 points) Recall that the p-dimensional multivariate Gaussian distribution is defined by a mean vector
µ and a covariance matrix Σ. If X is normal distributed with parameters µ and Σ, then Σ contains the
covariance of each pair of components of X, i.e.,

Cov(Xr, Xs) = E[(Xr − µr)(Xs − µs)] = Σrs = Σsr,

for all 1 ≤ r, s ≤ p. The diagonal terms Σrr are called variances. Recall further that the correlation
coefficient is defined as

Cor(Xr, Xs) =
Cov(Xr, Xs)√

Cov(Xr, Xr) Cov(Xs, Xs)

Consider the bivariate case p = 2. Let the variance of X1 be 2.0 and the variance of X2 be 3.0, and let
both variables have mean zero, µ = (0, 0). Find Σ such that Cor(X1, X2) = −0.75. Draw n = 200 data
points from the normal distribution N (µ,Σ) with the obtained parameters, and evaluate the empirical
covariance matrix, Σ̂, and the empirical correlation between X1 and X2.

Hint: The R functions mvrnorm (from library MASS), cov, and cor should do the job. You should observe
that the empirical and exact values are somewhat close but not exactly the same.

(b) (3 points) Create a scatter plot of the n = 200 points you sampled. Also use the function kde2d to obtain
an estimate of the data density and visualize the density using functions such as contour, image, and
persp.

Hint: Each of the last three functions can take the output of kde2d directly as their argument. Study the
scatter plot and the visualizations, and try to get a feeling on how they reflect the parameters µ and Σ.
Try changing the parameters and repeat to see the effect. You can also increase or decrease the sample
size.

(c) (3 points) Next, generate an evenly spaced grid of points of the form

x = (x1, x2) ∈ { (iδ, jδ) ; i, j ∈ {−20,−19, . . . , 19, 20 } }

with δ = 0.25. In other words, the points evenly cover a square area from −5 to 5 along each axis with
41 · 41 = 1681 uniformly spaced points.

Evaluate the density N (x ; µ,Σ), where µ and Σ are the same as in item (a), at each grid point using the
formula given in the lecture slides (Lecture 6, p. 12), and store the resulting values in a 41 × 41 matrix.
Use contour, image, and persp again to visualize the density.

Hint: You can generate the grid by expand.grid(.25*(-20:20),.25*(-20:20)). This will produce a
1681 × 2 array with the grid points (x1, x2) as rows. The inverse of a matrix can be obtained by solve.
Apply the density formula to each of them to obtain 1681 density values. (The first of them should be
about 1.1307× 10−19.) To organize them into a square matrix, use matrix(..., nrow=41). This matrix
will be the argument of the three visualization functions.

(Exercises continued on the next page...)
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(d) (3 points) Here comes the challenge. (But don’t give up: you’re almost there! You should really consider
working together with each other to solve hard exercises like this one.)

Denote the mean vector in items (a)–(c) by µ1, and let µ2 = (2, 1). Compute the density at the same
set of grid points as in item (c) under distribution N (µ2,Σ), i.e., with a different mean but the same
covariance matrix.

Denote the two densities by fi(x) = N (x ; µi,Σ), i ∈ { 1, 2 }. Calculate the ratio

p(Y = 1 | x) =
f1(x)π1

f1(x)π1 + f2(x)π2
,

with π1 = π2 = 1/2. This is a linear discriminant (with uniform class distribution). Or to be more precise,
this is the posterior probability of class Y = 1 given x.

Visualize the decision boundary using, e.g., contour. As the name suggests, you should get a linear
boundary. If you like, you can now try how well your classifier works by drawing data from either class
and evaluating the above formula. What happens if you use different covariance matrices Σ1 and Σ2?

Here are our plots from contour (b)–(c) and (for some variety) image (d).

Problem 2 (4 + 2 points)

(a) (4 points) Prove the last equality on p. 11 of the slides (Lecture 6), i.e.,

1

(2π)p/2σ1 . . . σp
exp

−1

2

p∑
j=1

(xj − µj)
2

σ2
j

 =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where Σ is defined as on the same slide, |Σ| is the determinant of Σ, and Σ−1 is the inverse of Σ.

Hint: The fact that Σ is a diagonal matrix makes your life a whole lot easier! Feel free to use Google to
look for help.

(b) (2 points) See slide 13 (Lecture 6). Given N (x ; µ,Σ) = a, solve for the value of b as a function of a such
that

(x− µ)TΣ−1(x− µ) = b.

Let p = 3, and Σ a diagonal matrix with Σjj = j for all j ∈ { 1, 2, 3 }. Plug in the value a = 1/100 and
and check that you get b = 1.90495.

(Exercises continued on the next page...)
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Problem 3 (2+2+2 points)

Here you’ll get a chance to get a taste of machine learning research through reading a scientific article, or
as we call them, a paper. Download the paper “On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes” by Andrew Ng and Mike Jordan (2001).1

(a) (2 points) Read the abstract and the Introduction. According to the authors, is discriminative learning
better than generative learning? Justify your answer.

(b) (2 points) By a “parametric family of probabilistic models”, the authors mean a set of distributions, where
each distribution is defined by a set of parameters. An example of such a family is our friend, the family
of normal distributions where the parameters are µ and Σ. Ng and Jordan denote by hGen and hDis

two models chosen by optimizing different things. What are these ‘things’ being optimized, i.e., what
characterizes these two models? Which two families do the authors discuss, and what are the (hGen, hDis)
pairs for those models?

(c) (2 points) Study Figure 1 in the paper. Explain what it suggests (see the last paragraph of the Introduc-
tion). Reflect this on item (a).

1http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
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