582631 Introduction to Machine Learning, Fall 2016 Exercise set II

Model solutions

1.

(a) Because the points are uniformly distributed, the expected fraction of the points residing on a subinterval is the length of the subinterval compared to the length of the whole interval. If we denote the length of the interval by α, the expected number of points falling within the interval, $E(\alpha)$, is given by

$$
E(\alpha)=\frac{0.1}{1}=0.1 .
$$

(b) In two dimensions, we have likewise that the expected number of points is given by the relative area of the smaller square compared to the area of the whole square:

$$
E(\alpha)=\frac{0.1^{2}}{1^{2}}=0.01 .
$$

(c) For general $p \geq 1$, the expected fraction is the relative volume of the smaller hypercube compared to the volume of the whole hypercube:

$$
E(\alpha)=\frac{0.1^{100}}{1^{100}}=10^{-100}
$$

(d) If we assume the observations are uniformly distributed and use aforementioned definition of "nearness", on average only 10^{-p} training observations are near the given test observation when the number of features is $p \geq 1$.
In practice, things may turn out not to be as bad as this: observations are usually not uniformly distributed, and sometimes two observations do not have to be near each other in all p dimensions to be considered similar to each other - for example, some of the features may be irrelevant in view of the task at hand.
(e) We can solve the length, x, of the side of the hypercube that contains on the average 10% of the data:

$$
\begin{aligned}
\frac{1}{10} & =E(\alpha)=\frac{x^{p}}{1^{p}} \\
x & =10^{-1 / p} .
\end{aligned}
$$

For $p=1,2$ and 100 , this is:

$$
\begin{aligned}
& x=10^{-1}=0.1 \\
& x=10^{-1 / 2} \approx 0.3162 \\
& x=10^{-1 / 100} \approx 0.9772 .
\end{aligned}
$$

So the hypercube that contains on the average only 10% of the data has sides of length approximately 0.9772 , so almost 1 ! This demonstrates that data is sparse in highdimensional spaces. In other words, the training observations that are among the 10% of the training data nearest to the test observation may actually be almost maximally different from the test observation.
2. Define a binary random variable D as follows:

$$
D= \begin{cases}1, & \text { if a company pays a dividend } \\ 0, & \text { otherwise }\end{cases}
$$

The prior probabilities for D are $\operatorname{Pr}(D=0)=\pi_{0}=0.2$, and $\operatorname{Pr}(D=1)=\pi_{1}=0.8$.
The conditional distributions of the percentage profit X given values of D are:

$$
\begin{aligned}
& f_{X \mid D=0}(x)=\mathcal{N}\left(x ; \mu_{0}, \sigma^{2}\right) \\
& f_{X \mid D=1}(x)=\mathcal{N}\left(x ; \mu_{1}, \sigma^{2}\right)
\end{aligned}
$$

where the expected values are $\mu_{0}=0, \mu_{1}=10$, and a common variance is $\sigma^{2}=36$.
We get the probability that a company pays a dividend given that its percentage profit is $X=4$ using the Bayes' theorem ${ }^{11}$

$$
\begin{aligned}
P(D=1 \mid X=4) & =\frac{\pi_{1} f_{X \mid D=1}(4)}{\pi_{1} f_{X \mid D=1}(4)+\pi_{0} f_{X \mid D=0}(4)} \\
& =\frac{0.8 \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(4-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right)}{0.8 \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(4-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right)+0.2 \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(4-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right)} \\
& =\frac{0.8 e^{-\frac{1}{2}}}{0.8 e^{-\frac{1}{2}}+0.2 e^{-\frac{2}{9}}} \approx 0.752
\end{aligned}
$$

Thus, the probability that the company pays a dividend given that its percentage profit is 4.0 is about 75%.

Note that this is just slightly lower than the prior probability, $\operatorname{Pr}(D=1)$, which was 80%. This is consistent with the reasoning that the average percentage profit of companies that pay dividends, $\mu_{1}=10.0$, is a little further away from the observed profit, $x=4.0$, than the average profit of companies that don't pay dividends, $\mu_{0}=0.0$. So while the observed profit is slightly more typical to non-dividend-paying companies, the difference is so small that the effect on the conditional probability is less than 5 percentage points.

We are of course curious to know what the posterior probability would have looked like if the profit percentage, x, had been something different. To look into this, let's write a little R script that computes the posterior $P(D=1 \mid X=x)$ for different x :

```
po <- function(x) { a=.8*exp(-(x-10)~2/(2*36)); b=.2*exp(-(x-0)~2/(2*36)); a/(a+b) }
x = .5*(-30:50) # a grid of points between -15 and 25
plot(x, po(x)) # basic plot showing the posterior as a function of x
plot(x, po(x), t='h', lwd=6, col='orange', lend=2) # fancy plot showing the same
points(4, po(4),t='h',lwd=6,col='black',lend=2) # emhasize x=4 in black
```

(plot shown on the next page...)

[^0]

A fancy plot of the posterior with the point $x=4$ highlighted in black.
As you can see, the model predicts that the chances that a company pays dividends decrease as the profit x decreases, and vice versa. What we have managed to implement here is actually one-dimensional Linear Discriminant Analysis (LDA)!

In next week's exercises, we'll do something similar in two-dimensions.

[^0]: ${ }^{1}$ Bayes' theorem applies also for the joint distribution of the discrete and continuous random variable. For a continuous variable probabilities in the formula are replaced by densities, and conditional probabilities by conditional densities.

