
Classification (continued from last week)

1 ,

Naive Bayes classifier

I Assume we have p input features X1, . . . ,Xp where the
possible values for Xj are { 1, . . . , qj } for some (small)
number qj of distinct values

I There are |X | =
∏p

j=1 qj possible inputs we may need to
classify

I To determine an arbitrary distribution over X , or an arbitrary
conditional distribution P(Y | X), we would need |X | − 1
parameters (since probabilities sum to one but can otherwise
be chosen freely to each x ∈ X)

I In many realistic scenarios, |X | is much more than the sample
size, so learning such a distribution is out of the question —
we need to make some simplifying assumptions

2 ,

Naive Bayes classifier (2)

I Naive Bayes assumption is that input features are
conditionally independent given class:

P(X1, . . . ,Xp | Y) = P(X1 | Y) . . .P(Xp | Y)

I Each P(Xi | Y) is determined by qi − 1 (free) parameters

I For k classes, the number of parameters is
k
∑p

j=1(qi − 1)� k(
∏p

j=1 qi − 1)

3 ,

Conditional independence

I Classical example used to illustrate conditional independence
(and also difference between correlation and causation) is
correlation between ice cream sales and drowning deaths

I During sunny and warm weather people tend to both eat ice
cream and go boating, swimming etc. which increases chances
of drowning

I Hence, there is positive correlation between ice cream sales
and number of drownings on a given day

I However, if we already know what the weather actually was,
then knowing how much ice cream was sold does not help us
predict drowning

I Hence, ice cream sales and drownings are conditionally
independent given weather

4 ,

Learning a naive Bayes model

I Assume there are k classes 1, . . . , k and p input features
where for j = 1, . . . , p feature Xj has range { 1, . . . , qj }

I We model P(X | Y = c) separately for each class c and
feature X ∈ {X1, . . . ,Xp }:

I For each c ≤ k , j ≤ d , and x ≤ qj , let nc,j,x be the number of
examples in the training data in class c with feature value
Xj = x , and nc =

∑qj
x=1 nc,j,x

I We estimate

P(Xj = x | Y = c) =
nc,j,x + mc,j,x

nc + mc,j

where mc,j,x is a prior pseudocount and mc,j =
∑qj

x=1 mc,j,x

I Usual choices for pseudocounts are mc,j,x = 0 (maximum
likelihood), mc,j,x = 1 (Laplace smoothing), and mc,j,x = 1/2
(Krichevsky-Trofimov; my favourite!)

5 ,

Predicting with naive Bayes

I Given an instance x = (x1, . . . , xp), we use the estimates from
previous slide to write

P(X = x | Y = c) = P(X1 = x1 | Y = c) . . .P(Xp = xp | Y = c)

for all c ∈ { 1, . . . , k }, which gives us, via Bayes theorem

P(Y = c | X = x) =
P(X = x | Y = c)P(Y = c)∑k

c ′=1 P(X = x | Y = c ′)P(Y = c ′)

I The basic version of naive Bayes then predicts class c with
maximum posterior probability (MAP):

ĉ(x) = arg max
c

P(Y = c | X = x)

I Probabilistic predictions are obtained directly from
P(Y = c | X = x)

6 ,

Predicting with naive Bayes (2)

I Since the denominator
∑k

c ′=1 P(X = x | Y = c ′)P(Y = c ′)
does not depend on c , the MAP classification is the same as

ĉ(x) = arg max
c

P(X = x | Y = c)P(Y = c)

I If the class prior P(Y) is uniform, this simplifies to maximum
likelihood (ML) prediction

ĉ(x) = arg max
c

P(X = x | Y = c)

7 ,

Predicting with naive Bayes (3)

I Substituting the product formula for P(X = x | Y = c) in the
previous yields

ĉ(x) = arg max
c

P(Y = c) ·
p∏

j=1

P(Xj = xj | Y = c)


I Taking log doesn’t change the maximum, so

ĉ(x) = arg max
c

logP(Y = c) +

p∑
j=1

logP(Xj = xj | Y = c)


I In other words, the score of each class is a sum composed of

one term per feature: a class c for which Xj = xj is more
likely gains more “points”

I Recall that the probabilities P(Xj = xj | Y = c) are estimated
from training data (usually smoothed empirical frequencies)

8 ,

About naive Bayes assumption

I The assumption that features are independent conditioned on
class is

I very strong

I often quite untrue

I Therefore in particular the probabilities produced by a naive
Bayes model should not be trusted too much

I However the classification performance (zero–one loss) of
naive Bayes is often quite hard to beat in practice

I An informal justification for using naive Bayes is that often
the data are collected in a way that aims to ensure
(approximate) conditional independence

I for example, in medical diagnosis, obtaining each feature
requires that we carry out a test: it makes no sense to measure
temperature from both armpits, or other redundant variables
that we know to be strongly dependent (given the class)

9 ,

NB for real-valued features

I When features xi are real-valued, we can use the naive Bayes
assumption as before, but now we deal with densities instead
of discrete probabilities:

p(x | Y = +1) = p(X1 = x1 | Y = +1) . . . p(Xp = xp | Y = +1)

p(x | Y = −1) = p(X1 = x1 | Y = −1) . . . p(Xp = xp | Y = −1)

I We model p(Xj = x | Y = c) as a Gaussian separately for
each feature Xj and class c

I As before, we (usually) choose the maximum a posteriori
prediction

ĉ(x) = arg max
c

p(X = x | Y = c)P(Y = c)

where P(Y) is again the class prior

10 ,

Gaussians for naive Bayes

I Consider binary classification with positive examples Tr+ and
negative examples Tr− in training set

I Using maximum likelihood estimates for parameters, we get
p(Xj = x | Y = +1) = N (x | µ̂+,j , σ̂

2
+,j) where

µ̂+,j =
1

Tr+

∑
x∈Tr+

xj

σ̂2+,j =
1

Tr+

∑
x∈Tr+

(xj − µ̂+,j)
2

and similarly for negative examples

I The Gaussian assumption on p(Xj = xj | Y = c) leads to
(a special case of) LDA/QDA! (Exercise)

11 ,

Probabilistic models: summary

I Generative probabilistic models involve modelling both
P(X | Y = c) and P(Y = c) for different classes c

I Important tools for this include
I multivariate Gaussians (LDA, QDA): very important overall in

statistics and machine learning, important to be familiar with
them

I Naive Bayes: especially discrete NB commonly used in
practice, important to understand its uses and limitations

I Discriminative probabilistic learning aims directly at
P(Y = c | X).

I Logistic regression is a good example

12 ,

Probabilistic models in the textbook

I We have more or less covered Sec. 4 (“Classification”) except
pages 145–149 (class-specific accuracy, ROC curves),
including logistic regression, LDA, and QDA

I In addition, we discussed Naive Bayes which is required for
this course (and the exam) but is not covered in the book at
all

I Next up: k-NN, decision trees, and SVM

13 ,

Classification: Discriminative methods

14 ,

Similarity and dissimilarity

I Notions of similarity and dissimilarity between objects are
important in machine learning

I clustering tries to group similar objects together

I many classification algorithms are based on the idea that
similar objects tend to belong to same class

I etc.

15 ,

Similarity and dissimilarity (2)

I Examples: think about suitable similarity measures for
I handwritten letters

I segments of DNA

I text documents

“Parliament overwhelmingly approved
amendments to the Firearms Act on
Wednesday. The new law requires
physicians to inform authorities of
individuals they consider unfit to own
guns. It also increases the age for
handgun ownership from 18 to 20.”

“Parliament's Committee for
Constitutional Law says that persons
applying for handgun licences should
not be required to join a gun club in
the future. Government is proposing
that handgun users be part of a gun
association for at least two years.”

“The cabinet on Wednesday will be
looking at a controversial package of
proposed changes in the curriculum in
the nation's comprehensive schools.
The most divisive issue is expected to
be the question of expanded language
teaching.”

ACCTGTCGATCCTGTGTCGATTGC

16 ,

Similarity and dissimilarity (3)

I Similarity: s

I Numerical measure of the degree to which two objects are alike

I Higher for objects that are alike

I Typically between 0 (no similarity) and 1 (completely similar)

I Dissimilarity: d

I Numerical measure of the degree to which two objects are
different

I Higher for objects that are different

I Typically between 0 (no difference) and ∞ (completely
different)

17 ,

Nearest neighbour classifier

I Remember Problem 2.3?

I Nearest-neighbour classifier is a simple geometric model based
on distances:

I store all the training data

I to classify a new data point, find the closest one in the
training set and use its class

I More generally, k-nearest-neighbour classifier finds k nearest
points in the training set and uses the majority class (ties are
broken arbitrarily)

I Different notions of distance can be used, but Euclidean is the
most obvious

18 ,

Nearest neighbour classifier (2)

I Despite its utter simplicity, the k-NN classifier has remarkably
good properties: both in theory and practice

I If k = 1, the error rate of 1-NN approaches 2EBayes, where
EBayes is the Bayes error, i.e., the minimum achievable error
by any classifier

I If k →∞ and k/n→ 0 as n→∞, then the error rate of
k-NN approaches EBayes

I These properties hold under very mild assumptions on the
data source P(X ,Y)

I However, can be veeeery slow — as you may have noticed!
I (But a nice application for approximate nearest neighbor

search — point this out to Ville to make him happy!)

19 ,

Nearest neighbour classifier (3)

from (James et al., 2013)

20 ,

Decision trees: An example

I Idea: Ask a sequence of questions to infer the class

includes ‘netflix prize’includes ‘viagra’

includes ‘millions’

includes ‘meds’

no yes

not spamspam

yes

spam

yes nono

spam

yesno

not spam

21 ,

Decision trees: A second example

from (James et al., 2013)

I In R: library(tree)
22 ,

Decision trees: Structure

I Structure of the tree:

I A single root node with no incoming edges, and zero or more
outgoing edges (where edges go downwards)

I Internal nodes, each of which has exactly one incoming edge
and two or more outgoing edges

I Leaf or terminal nodes, each of which has exactly one
incoming edge and no outgoing edges

I Node contents:

I Each terminal node is assigned a prediction
(here, for simplicity: a definite class label).

I Each non-terminal node defines a test, with the outgoing
edges representing the various possible results of the test
(here, for simplicity: a test only involves a single feature)

23 ,

Learning a decision tree from data: General idea

I Simple idea: Recursively divide up the space into pieces which
are as pure as possible

x1

x2

0 1 2 3 4 5
0

1

2

3

24 ,

Learning a decision tree from data: General idea

I Simple idea: Recursively divide up the space into pieces which
are as pure as possible

A

x1

x2

0 1 2 3 4 5
0

1

2

3

x1 > 2.8

24 ,

Learning a decision tree from data: General idea

I Simple idea: Recursively divide up the space into pieces which
are as pure as possible

A

B

x1

x2

0 1 2 3 4 5
0

1

2

3

x1 > 2.8

x2 > 2.0

24 ,

Learning a decision tree from data: General idea

I Simple idea: Recursively divide up the space into pieces which
are as pure as possible

A

B

B

x1

x2

0 1 2 3 4 5
0

1

2

3

x1 > 2.8

x2 > 2.0x2 > 1.2

24 ,

Learning a decision tree from data: General idea

I Simple idea: Recursively divide up the space into pieces which
are as pure as possible

A

B

B

C
x1

x2

0 1 2 3 4 5
0

1

2

3

x1 > 2.8

x2 > 2.0x2 > 1.2

x1 > 4.3

24 ,

Decision tree vs linear classifier (e.g., LDA)

from (James et al., 2013)

I Two continuous features X1, X2; Top: true model linear;
Bottom: true model “rectangular”

I Left: linear classifier; Right: (small) decision tree

25 ,

Learning a decision tree from data: basic algorithm

I Notation: Let D denote the set of examples corresponding to
a node t. For the root node, D is the set of all training data.

I Basic algorithm:

1. if there are less than nmax examples in D, then t is a leaf
node

2. else Select a feature test that partitions D into two subsets.
Create a child node for each subset.

3. Repeat recursively to each child node.

26 ,

Regression trees

I The textbook (Sec. 8) first presents regression trees and then
classification trees

I The idea in regression trees is to predict a continuous
outcome Y by a representative (usually the average) outcome
ȳ within each leaf

I Otherwise, the idea is the same

I You should (have already) read the textbook to learn more

I We cover classification trees a some more detail than the
book: e.g., splitting criteria and pruning are only superficially
defined in the book

27 ,

Feature test conditions

I Binary features: yes / no (left / right)

I Nominal (categorical) features with L values:

I Pick one value (left) vs other (right) — can also do arbitrary
subsets

I Ordinal features with L states:

I Split at a given value: Xi ≤ T (left) vs Xi > T (right)

I Continuous features:

I Same as ordinal

I NB: We could also use multiway (not only binary) splits

28 ,

Impurity measures

Key part in choosing test for a node is purity of a subset D of
training data

I Suppose there are K classes. Let p̂mc be the fraction of
examples of class c among all examples in node m:

I Impurity measures:

Classification error E = 1−max
c

p̂mc

(Cross) entropy D = −
K∑

c=1

p̂mc log p̂mc

Gini index G =
K∑

c=1

p̂mc(1− p̂mc)

29 ,

Impurity measures: Binary classification

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p0

en
tro
py

Entropy/2

Gini

Misclassification error

I The three measures are somewhat similar, but the textbook
recommends either Gini or the cross entropy

30 ,

Selecting the best split

I Let Q(D) be impurity of data set D

I Assume a given feature test splits D into subsets D1 and D2

I We define the impurity of this split as

Q({D1,D2 }) =
2∑

i=1

|Di |
|D|

Q(Di)

and the related gain as

Q(D)− Q({D1,D2 })

I Choose the split with the highest gain

31 ,

Avoiding over-fitting

I The tree building process that splits until nodes have size
nmax (e.g., 5), will overfit

I It would be possible to stop recursion once the subset D is
“pure enough”. This is known as pre-pruning but generally
not recommended

I In contrast, post-pruning (called simply pruning in the
textbook) is an additional step to simplify the tree after it has
first been fully grown until |D| ≤ nmax

I Reduced error pruning is a commonly used post-pruning
method

I usually increases understandability to humans

I typically increases generalisation performance

32 ,

Reduced-error pruning

I Can be done by either withholding a part of the data as a test
set or by cross-validation (CV)

I Supposing we choose to use a hold-out test set:
1. use the training set to build the full decision tree
2. for each tree size Nm (# leaf nodes) in 1, . . . , n/nmax:
3. while # nodes is more than Nm:
4. remove the bottom-level split that has the smallest gain
5. evaluate the test set error of each pruned tree
6. choose the # nodes Nm that minimizes the test error

I With CV, the same is repeated several times with different
train–test splits and the test set error is averaged

I The tree building stage can be done using any of the impurity
measures (misclass. rate, Gini, entropy), but in the pruning
stage, Steps 4–5 almost invariably use misclassification rate

33 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees

I Nonparametric approach:

I If the tree size is unlimited, can in approximate any decision
boundary to arbitrary precision (like k-NN)

I So with infinite data could in principle always learn the optimal
classifier

I But with finite training data needs some way of avoiding
overfitting (pruning) — bias–variance tradeoff!

x1

x2

0 1 2 3 4 5
0

1

2

3

34 ,

Properties of decision trees (contd.)

I Local, greedy learning to find a reasonable solution in
reasonable time (as opposed to finding a globally optimal
solution)

I Relatively easy to interpret (by experts or regular users of the
system)

I Classification generally very fast (linear in depth of the tree)

I Usually competitive only when combined with ensemble
methods: bagging, random forests, boosting

I The textbook gives the impression that ensemble methods
and decision trees belong together but we will consider
ensemble methods more generally (in a week or two)

35 ,

