Evaluation in Computational Creativity

(Some views. Anna Jourdanous provides a wider perspective)
Evaluation is important – and difficult

- Evaluation of creativity allows us to compare methods and control progress
- However, evaluation of creativity is very difficult
 - No precise definition of creativity
 - Various goals (novelty, value, originality, ...)
 - Context-dependence
 - Cost of evaluation
 - Evolution of (social) systems
 - ...

...
What to evaluate?

- Machine creativity: Creative performance of creative programs
- Computer-supported creativity: Increase in creativity of humans using CC tools
- Creativity studies: Increase in knowledge about creative processes
- Focus here: evaluation of machine creativity
Evaluation of Machine Creativity

Two possible targets in evaluation of machine creativity (Colton 2008):

– Artefact-based evaluation: are the results creative?
 – e.g: novelty and value of results

– Process-based evaluation: is the process creative?
 – e.g: combinatorial/ exploratory/ transformational creativity; generation vs. creativity by Ventura; creative acts of the FACE model
Ritchie’s Framework for Artefact Based Evaluation

Ritchie (2007)
Consider a set R of artefacts produced by a system.

Primitive properties that can be considered:

- **Typicality**: Is the artefact a typical/recognizable example of the target genre?
- **Novelty**: How (dis)similar is the artefact to existing examples of its genre?
- **Quality** [= Value]
Formal definitions

- $\text{typ}(a) =$ amount of typicality associated to artefact a
- $\text{val}(a) =$ amount of quality associated to a
- $T_{\alpha,\beta}(X) = \{a \in X \mid \alpha \leq \text{typ}(a) \leq \beta\}$
 - Set of artefacts a with typicality between α and β
- $V_{\alpha,\beta}(X) = \{a \in X \mid \alpha \leq \text{val}(a) \leq \beta\}$
 - Set of artefacts a with value between α and β
- $\text{size}(X) =$ number of elements of X
- $\text{ratio}(X,Y) = \text{size}(X) / \text{size}(Y)$
Some criteria

Criterion 2 \(\text{ratio}(T_{\alpha,1}(R), R) > \theta \)
 - at least fraction \(\theta \) of results \(R \) have high typicality \((>\alpha) \)

Criterion 4 \(\text{ratio}(V_{\gamma,1}(R), R) > \theta \)
 - at least fraction \(\theta \) of results \(R \) have high value \((>\gamma) \)

Criterion 5 \(\text{ratio}(V_{\gamma,1}(R) \cap T_{\alpha,1}(R), T_{\alpha,1}(R)) > \theta \)
 - at least fraction \(\theta \) of results \(R \) have both high value \((>\gamma) \) and high typicality \((>\alpha) \)
Any creative system is based on some existing examples, in one way or another. These can – and should – be taken into account.

The *inspiring set* consists of all the relevant artefacts known to the program designer, or items which the program is designed to replicate, or a knowledge base of known examples which drives the computation within the program.

Inspiring set ≈ training set in ML/DM
Some more criteria

Criterion 9 \(\text{ratio}(I \cap R, I) > \theta \)
- Results R reproduce at least fraction \(\theta \) of the inspiring set \(I \)
- Is the system able to reproduce its training examples?

Criterion 10 \(\text{ratio}(R, I \cap R) > \theta \)
- Results R contain at least \(\theta - 1 \) times as many items outside the inspiring set \(I \) as inside it
- Can the system extrapolate outside the training examples?
Novelty vs. typicality?

Novelty and typicality are subtly different:

- Not recognizable as a member of the genre → low typicality
- Very different from the inspiring set (but possibly very clearly within the genre) → high novelty
Comments

Note: Ritchie does not prescribe a set of criteria. Instead, the criteria must be designed and chosen according to the goals and needs of each work; Richie gives examples of some of the possible criteria that one may want to use.
FACE Model for Process-Based Evaluation

Pease and Colton (2011)
F, A, C, E

– Focus on *creative processes*, not their results
– In the FACE model, systems can be characterized by their creative acts
– The four aspects of the model:
 – F – framing
 – A – aesthetics
 – C – concept
 – E – expression
– Here we present a simplified version
FACE aspects

- C: the concept or the idea of the artefact
 - E.g. use of excessive rhyming in poetry
- E: a concrete expression of the concept
 - E.g. a poem that uses excessive rhyming
- A: a measure of aesthetics of the work of art
 - E.g. emotionality etc. of a poem
- F: background information about the piece (framing)
 - E.g. a description of why excessive rhyming could be interesting, and what the poem expresses
Framing

- Framing is especially important for computational creativity
- It is difficult to appreciate the output (expression) without knowing anything about the process, its goals, etc.
 - E.g., is the resulting image pretty just by chance? Or did the system produce it based on some specific criteria and goals? Was the process complicated? Is there some intention, e.g., a message that is being conveyed?
Ground level of FACE

- Ground-level generative acts and their products
 - Act $F^g \rightarrow$ generates an item of framing information
 - Act $A^g \rightarrow$ generates an aesthetic measure
 - Act $C^g \rightarrow$ generates a concept
 - Act $E^g \rightarrow$ generates an expression of a concept
- Any system can now be described in terms of who carries out these acts, and how
 - A simple generative system only performs E^g
 - A system that learns to evaluate also performs A^g
 - (The programmer and other humans probably perform the other acts)
Meta-level of FACE

- FACE also has a meta-level: processes that produce ground-level generators
- Process-level acts and their outputs:
 - Act $F_p \rightarrow$ generates a method for generating framing information
 - Act $A_p \rightarrow$ generates a method for generating aesthetic measures
 - Act $C_p \rightarrow$ generates a method for generating concepts
 - Act $E_p \rightarrow$ generates a method for generating expressions of a concept
Example from Pease et al, 2011
The Upside Downs by Verbeek
FACE Upsidedowns

F^P: Methods for generating the contextual history of this genre of art.

F^g: The contextual history of this genre of art, motivation, justification, etc.

A^P: Methods for generating the idea of art having multiple meanings when viewing from multiple perspectives.

A^g: The idea of art having multiple meanings when viewing from multiple perspectives.

C^P: Methods for generating new perspectives from which the art might make sense.

C^g: The constraint that a picture must make sense when upside down.

E^P: Methods for generating expressions of art which have a different meaning when viewed upside down.

E^g: Expressions of art which have a different meaning when viewed upside down (see figure 1)