

Evaluation in Computational Creativity

(Some views.

Anna Jourdanous provides a wider perspective)

Evaluation is importantand difficult

- Evaluation of creativity allows us to compare methods and control progress
- However, evaluation of creativity is very difficult
 - No precise definition of creativity
 - Various goals (novelty, value, originality, ...)
 - Context-dependence
 - Cost of evaluation
 - Evolution of (social) systems

— ...

What to evaluate?

- Machine creativity:
 Creative performance of creative programs
- Computer-supported creativity:
 Increase in creativity of humans using CC tools
- Creativity studies: Increase in knowledge about creative processes
- Focus here: evaluation of machine creativity

Evaluation of Machine Creativity

Two possible targets in evalution of machine creativity (Colton 2008):

- Artefact-based evaluation: are the results creative?
 - e.g: novelty and value of results
- Process-based evaluation: is the process creative?
 - e.g: combinatorial/ exploratory/ transformational creativity;
 generation vs. creativity by Ventura; creative acts of the FACF model

Ritchie's Framework for Artefact Based Evaluation

Ritchie (2007)

Essential properties

Consider a set R of artefacts produced by a system.

Primitive properties that can be considered:

- Typicality: Is the artefact a typical/ recognizable example of the target genre?
- Novelty: How (dis)similar is the artefact to existing examples of its genre?
- Quality [= Value]

Formal definitions

- typ(a) = amount of typicality associated to artefact a
- val(a) = amount of quality associated to a
- $T_{\alpha,\beta}(X) = \{a \in X \mid \alpha \le typ(a) \le \beta\}$
 - Set of artefacts a with typicality between α and β
- $-V_{\alpha,\beta}(X) = \{a \in X \mid \alpha \le val(a) \le \beta\}$
 - Set of artefacts a with value between α and β
- size(X) = number of elements of X
- ratio(X,Y) = size(X) / size(Y)

Some criteria

<u>Criterion 2</u> $ratio(T_{\alpha,1}(R), R) > \theta$

– at least fraction θ of results R have high typicality (> α)

<u>Criterion 4</u> $ratio(V_{v,1}(R), R) > \theta$

– at least fraction θ of results R have high value (> γ)

<u>Criterion 5</u> $ratio(V_{\gamma,1}(R) \cap T_{\alpha,1}(R), T_{\alpha,1}(R)) > \theta$

at least fraction θ of results R have both high value (> γ) and high typicality (> α)

Inspiring set

- Any creative system is based on some existing examples, in one way or another. These can – and should – be taken into account.
- The inspiring set consists of all the relevant artefacts known to the program designer, or items which the program is designed to replicate, or a knowledge base of known examples which drives the computation within the program
- Inspiring set ≈ training set in ML/DM

Some more criteria

Criterion 9 $ratio(I \cap R, I) > \theta$

- Results R reproduce at least fraction θ of the inspiring set I
- Is the system able to reproduce its training examples?

Criterion 10 ratio(R, $I \cap R$) > θ

- Results R contain at least θ-1 times as many items outside the inspiring set I as inside it
- Can the system extrapolate outside the training examples?

Novelty vs. typicality?

Novelty and typicality are subtly different:

- Not recognizable as a member of the genre
 → low typicality
- Very different from the inspiring set (but possibly very clearly within the genre) → high novelty

Comments

Note: Ritchie does not prescribe a set of criteria. Instead, the criteria must be designed and chosen according to the goals and needs of each work; Richie gives examples of some of the possible criteria that one may want to use.

FACE Model for Process-Based Evaluation

Pease and Colton (2011)

F, **A**, **C**, **E**

- Focus on *creative processes*, not their results
- In the FACE model, systems can be characterized by their creative acts
- The four aspects of the model:
 - F framing
 - A aesthetics
 - C concept
 - E expression
- Here we present a simplified version

FACE aspects

- C: the concept or the idea of the artefact
 - E.g. use of excessive rhyming in poetry
- E: a concrete expression of the concept
 - E.g. a poem that uses excessive rhyming
- A: a measure of aesthetics of the work of art
 - E.g. emotionality etc. of a poem
- F: background information about the piece (framing)
 - E.g. a description of why excessive rhyming could be interesting, and what the poem expresses

Framing

- Framing is especially important for computational creativity
- It is difficult to appreciate the output (expression) without knowing anything about the process, its goals, etc.
 - E.g., is the resulting image pretty just by chance? Or did the system produce it based on some specific criteria and goals? Was the process complicated? Is there some intention, e.g., a message that is being conveyed?

Ground level of FACE

- Ground-level generative acts and their products
 - Act F^g → generates an item of framing information
 - Act A^g → generates an aesthetic measure
 - Act C^g generates a concept
 - Act $E^g \rightarrow$ generates an expression of a concept
- Any system can now be described in terms of who carries out these acts, and how
 - A simple generative system only performs E^g
 - A system that learns to evaluate also performs A^g
 - (The programmer and other humans probably perform the other acts)

Meta-level of FACE

- FACE also has a meta-level: processes that produce ground-level generators
- Process-level acts and their outputs:
 - Act F^p → generates a method for generating framing information
 - Act A^p → generates a method for generating aesthetic measures
 - Act C^p → generates a method for generating concepts
 - Act E^p → generates a method for generating expressions of a concept

Example from Pease et al, 2011 The Upside Downs by Verbeek

FACE Upsidedowns

- F^p: Methods for generating the contextual history of this genre of art
- F^g: The contextual history of this genre of art, motivation, justification, etc.
- A^p: Methods for generating the idea of art having multiple meanings when viewing from multiple perspectives
- A^g: The idea of art having multiple meanings when viewing from multiple perspectives
- C^p: Methods for generating new perspectives from which the art might make sense
- C^g: The constraint that a picture must make sense when upside down
- E^p: Methods for generating expressions of art which have a different meaning when viewed upsidedown
- E^g : Expressions of art which have a different meaning when viewed upsidedown (see figure 1)

HELSINGIN YLIO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI