
582631 Introduction to Machine Learning, Fall 2016
Exercise set III
Model solutions

2.

(a) First, because Σ is a diagonal matrix, the square root of its determinant is

|Σ|1/2 =

(
p∏
i=1

σ2i

)1/2

=

p∏
i=1

σi,

which is the term appearing in the constant in front of the exponent term. The inverse
of a diagonal matrix is given by

Σ−1 = diag
(

1

σ21
, . . . ,

1

σ2p

)
. (1)

Thus, the result of the matrix product in the exponent term simplifies and gives

(x− µ)TΣ−1(x− µ) =
[
x1 − µ1 . . . xp − µp

]
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σ2
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
x1 − µ1...
xp − µp



=
[
x1−µ1
σ2
1

. . .
xp−µp
σ2
p

]x1 − µ1...
xp − µp


=

p∑
i=1

(xi − µi)2

σ2i
.

(2)

Plugging (1) and (2) into the right-hand side of the given formula gives the left-hand
side. Q.E.D.

(b) By plugging the density of the multivariate normal distribution into the equation we
can solve b:

1

(2π)p/2|Σ|1/2
e−

b
2 = a

e−
b
2 = (2π)p/2|Σ|1/2a

− b
2
= log a+

p

2
log(2π) +

1

2
log |Σ|

b = −2 log a− p log(2π)− log |Σ|.

The determinant of the covariance matrix is

|Σ| = σ21σ
2
2σ

2
3 = 6,

and by plugging this and a = 1/100, p = 3 into the formula above we get b ≈ 1.90495.
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On the interpretation of b (optional): What is a geometric interpretation of b?
Consider first a special case where the covariance matrix of the p-dimensional multi-
normal distribution is diagonal:

Σ−1 = diag
(

1

σ21
. . .

1

σ2p

)
.

In the first part of the exercise we computed this matrix sum:

b = (x− µ)TΣ−1(x− µ)

b =

p∑
i=1

(xi − µi)2

σ2i

1 =

p∑
i=1

(
xi − µi√
b σi

)2

.

This is an equation of the ellipsoid with a centerpoint

µ = (µ1, . . . , µp)

and semi-axes with lengths √
b σ1, . . . ,

√
b σp.
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Figure 1: Diagonal covariance matrix with σ21 = 3, σ22 = 1.
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For the two-dimensional case this is illustrated on Figure 1, which included data gen-
erated from the 2-dimensional multinormal distribution N(µ,Σ) with

µ = (1, 1), Σ =

[
3 0
0 1

]
,

and contours of the density function of this distribution.

By computing b corresponding to the contour of the density function where its value is
a = 0.02 we get from the formula computed above b ≈ 3.05; hence, the length of the
semi-axes of this ellipse are

√
b · 3 ≈ 3.03,

√
b · 1 ≈ 1.75.

Line segments of these lengths are drawn along the coordinate axes starting from the
centre of the ellipse (1, 1). It can be seen that these are indeed the semi-axes of the
contour of the density function with value a = 0.02.
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Figure 2: Non-diagonal covariance matrix Σ from Exercise 1.

In the more general case where the covariance matrix is not necessarily diagonal, its
inverse matrix can be diagonalized with eigenvalue decomposition, because it is a sym-
metric square matrix. If Σ is positive definite, there exist an orthonormal matrix V
and diagonal matrix Λ s.t.

Σ−1 = VΛ−1VT.
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Hence, we get the equation of the ellipsoid

1 =

p∑
i=1

(
yi√
bλi

)2

.

for the transformation
y = (y1, . . . , yp) = VT (x− µ).

Now the length of the semiaxes are given by√
bλ1 . . . ,

√
bλp,

where λ1, . . . , λp are the eigenvalues of the covariance matrix Σ (diagonal of Λ), and
their directions are given by its eigenvectors (columns of V). This is illustrated in
Figure 2 for the normal distribution given in Exercise 1 (a).

3.

(a) The authors claim that although discriminative classifiers are traditionally considered
superior compared to generative classifiers because of their lower asymptotic error (the
error rate of the classifier as the sample size grows to infinity), generative classifiers
converge faster to their asymptotic error rate, and thus may have a higher accuracy on
small sample sizes.

(b) Given class labels y and predictors x = (x1, . . . , xp), the objective function that gen-
erative classifier hGen maximizes (with respect to parameter vector β) is the joint like-
lihood p(x, y) (or equivalently its logarithm log p(x, y)), while discriminative classifiers
hDis maximize directly the conditional likelihood p(y|x) (or equivalently its logarithm
log p(y|x)) or 0-1 loss.

Two models that the authors discuss are the case of continuous predictors, where each
p(xi|y) is normal distribution, and a discrete predictor case, where each p(xi|y) is a
Bernoulli distribution. In both of the cases the predictors are assumed independent. In
the first case the generative-discriminative pair is normal discriminant analysis (author
seem to refer to QDA with diagonal covariance matrix) and logistic regression, and in
the second case the pair is Naive Bayes and logistic regression.

(c) It seems that in most of the data sets the error rate of the generative classifiers (Naive
Bayes and normal discriminant analysis) does indeed initially decrease faster than the
error rate of the logistic regression as the sample size grows, but logistic regression
has a smaller error rate with higher sample sizes. However, with the smaller data sets
the logistic regression does not catch up generative classifiers, because the sample size
cannot be grown high enough to reach its asymptotic error rate. As suggested in the
introduction, although discriminative classifiers have better asymptotic performance,
generative classifiers may outperform them on smaller sample sizes.
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