
582631 Introduction to Machine Learning, Fall 2016

Due December 1st–2nd. NB: Deadline for returning solutions my email (in case you can’t attend a session) is
12:15 on Friday.

Problem 1 (3 + 3 + 4 + 2)

(a) (3 points) Consider a binary classification problem with Y ∈ {−1,+1 } and two real-valued features,
X1, X2 ∈ R. Suppose that we have learned a (Gaussian) naive Bayes classifier and obtained parameter
estimates µ̂−,j = 0, σ̂2

−,j = 1 and µ̂+,j = 0, σ̂2
+,j = 16 for j ∈ { 1, 2 }. Further, we use a uniform class prior

p̂(y) = 1/2 for y ∈ {−1,+1 }.
Use the Bayes formula to compute the posterior probability

P (Y = +1 | X1 = 1, X2 = 2)

(b) (3 points) Visualize the class posterior P (Y = +1 | x), where x = (x1, x2) contains the observed feature
values on a suitable grid of points.

Hint: This is quite similar to Exercise 3.1.

(c) (4 points) (This may look quite difficult, but in case you have any trouble, feel free to ask for help —
we’ve provided plenty of opportunities for doing that)

Show that the above naive Bayes classifier is actually a special case of QDA.

Hint: Both are generative classifiers with Gaussian p(x | y). What is the proper choice for the QDA
parameters µ and Σ that produces the same conditional distribution p(x | y) as the naive Bayes classifier
with the above parameters?

(d) (2 points) What is the number of free parameters that are needed to specify a (Gaussian) naive Bayes
classifier for p features?

What is the number of free parameters that are needed to specify a QDA classifier?

Which model is more complex? What do you think this will mean in terms of overfitting and the number
of training data points required to achieve the asymptotic error (recall Exercise 3.3) of each classifier?

Hint: The number of free parameters is the minimum number of values that one needs to learn from the
data. For example, while a covariance matrix has p × p = p2 elements, the number of free parameters
required to specify the covariance matrix is p(p+ 1)/2 < p2 because the matrix is symmetric.

(Exercises continued on the next page...)
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Problem 2 (2 + 2 + 2 + 2 points)

Assume that we have a situation where the class variable Y can take three values { 0, 1, 2 }, and that there
are two feature variables X1 ∈ { 0, 1 } and X2 ∈ { 0, 1, 2 }. The true distribution from which the data
is sampled is such that the class distribution P (Y ) is given by P (Y = 0) = 0.4, P (Y = 1) = 0.3 and
P (Y = 2) = 0.3, and class-conditional distributions P (X | Y ) are as specified below (with X = (X1, X2)):
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(a) (2 points) Let’s draw some training data from the above source. First draw a single class value from
P (Y ) as follows (if you are using R):

sample(0:2, size=1, replace=TRUE, prob=c(0.4,0.3,0.3))

This gives (by chance), Y = 1. Now then, we can draw the feature values from their joint distribution
as follows:

expand.grid(0:1,0:2)[sample(1:6, 1, replace=TRUE, prob=c(0.6,0.1,0.1,0.1,0.1,0.0)),]

where the prob vector is obtained from the above conditional probability table for Y = 1. Lo and
behold, we get X = (0, 0), which indeed is the most likely outcome for this class. (You may well get
something else, which is the point in random sampling.)

Draw a training data set of n = 100 points using this procedure. Check that you get roughly 40 cases
with Y = 0, and roughly 29 cases of X = (0, 0). (Can you see why the latter should be the case?)

(b) (2 points) Use the formula on p. 5 of the lecture slides (Lecture 7) to obtain smoothed estimates of the
class conditional distributions P̂ (Xi | Y = c) for each feature i ∈ { 1, 2 } and each class c ∈ { 0, 1, 2 }.
Try different smoothing parameters (maximum likelihood, Laplace, Krichesky-Trofimov).

Also, apply the same kind of smoothing to estimate the class distribution as follows

P̂ (Y = c) =
nc + α

n+ 3α

where nc is the number of training instances of class c, and α ∈ { 0, 1, 1/2 }.
(c) (2 points) Now generate a test set of 10 000 points from the same source as the training set and apply

the naive Bayes classifier you learned from the training data.

What is the test set error you obtain? (The test set error with Laplace smoothing should be between
0.4–0.6.)

Repeat with training sets of size n = 25, 50, 100, 200, 400, 800, 1600, 3200, 6400 and plot the test set
error as a function of the training set size. (The asymptotic error is 0.4.) Does the smoothing method
have an effect on the error?

(d) (2 points) Apply logistic regression to the same data and compare the results to those of the naive
Bayes classifier. Analyse and try to explain the results. You may ask whether the assumption
underlying the naive Bayes classifier is valid?

Hint: For logistic regression, use the function multinom from package nnet, which works very similar
to the glm function but allows more than two classes; about glm and logistic regression, see the Lab
on pp. 156–161 of the textbook. You should treat the covariates as qualitative (see Sec. 3.3.1 of the
textbook), which is achived by converting the columns to factors as follows:
D <- data.frame(Y = train$Y, X1 = factor(train$X[ ,1]), X2 = factor(train$X[ ,2]))

To check whether the naive Bayes assumption is valid, recall when two random variables are condi-
tionally independent given a third random variable.

(Exercises continued on the next page...)
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Problem 3 (2 + 2 points)

Consider the following infographic showing about 200 penalty shots taken at the 2010 FIFA World Cup.1 You
need only consider the light green (scored) and white (saved) shots, so that the problem becomes one of binary
classification. (The dark green dots hit the woodwork — like Asamoah’s — or went over or wide.)

Source: BBC, http://www.bbc.co.uk/guides/zgg334j

(a) (2 points) Manually sketch a decision tree to classify whether a shot will be scored or saved. The tree
should make at least five splits.

(b) (2 points) Given a subset of the points, D, define its impurity as Q(D) = 1 −maxk p̂k, where p̂k ∈ [0, 1]
denotes the proportion of the points in D that belong to class k. In other words, Q(D) is the remaining
fraction once the most common class is removed.

Define the impurity of a split that splits D into two subsets D1, D2 as

Q({D1, D2 }) =

2∑
i=1

|Di|
|D| Q(Di),

where |Di| denotes the number of points in set Di. Finally, define the gain of the split as

Q(D)−Q({D1, D2 })

Use the above definitions and compute the gain of each split in your decision tree.

Hint: Don’t worry if you don’t count the green and white balls exactly right as long as they are “in the
ballpark”.

1You may still remember some of them: https://www.youtube.com/watch?v=tDpx9GGH79I.
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