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I A refresher on linear models

I Feature transformations

I Linear classifiers:
I surrogate loss functions

I case Perceptron

I Maximum margin classifiers

I SVM and the kernel trick
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Linear models

I A refresher about linear models (see linear regression,
Lecture 3):

I We consider features x = (x1, . . . , xp) ∈ Rp throughout this
chapter

I Function f : Rp → R is linear if for some β ∈ Rp it can be
written as

f (x) = β · x =

p∑
j=1

βjxj

I By including a constant feature x1 ≡ 1, we can express models
with an intercept term using the same formula

I β is often called coefficient or weight vector
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Multivariate linear regression

I We assume matrix X ∈ Rn×p has n instances xi as its rows
and y ∈ Rn contains the corresponding labels yi

I In the standard linear regression case, we write

y = Xβ + ε

where the residual εi = yi − β · xi indicates the error of f (x)
on data point (xi , yi )

I Least squares: Find β which minimises the sum of squared
residuals

n∑
i=1

ε2i = ‖ε‖22

I Closed-form solution (assuming n ≥ p):

β̂ = (XTX)−1XTy
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Further topics in linear regression: Feature transformations

I Earlier (Lecture 3), we already discussed non-linear
transformations:
e.g., a degree 5 polynomial of x ∈ R

f (xi ) = β0 + β1xi + β2x
2
i + β3x

3
i + β4x

4
i + β5x

5
i

I Likewise, we mentioned the possibility to include interactions
via cross-terms

f (xi ) = β0 + β1xi1 + β2xi2 + β12xi1xi2
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Further topics in linear regression: Dummy variables

I What if we have qualitative/categorical (instead of
continuous) features, like gender, job title, pixel color, etc.?

I Binary features with two levels can be included as they are:
xi ∈ { 0, 1 }

I Coefficient can be interpreted as the difference between
instances with xi = 0 and xi = 1: e.g., average increase in
salary

I When there are more than two levels, it doesn’t usually make
sense to assume linearity

f ((x1, x2, 1))− f ((x1, x2, 0)) = f ((x1, x2, 2))− f ((x1, x2, 1))

especially when the encoding is arbitrary:
red = 0, green = 1, blue = 2
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Further topics in linear regression: Dummy variables (2)

I For more than two levels, introduce dummy (or indicator)
variables:

xi1 =

{
1 if ith person is a student

0 otherwise

xi2 =

{
1 if ith person is a physician

0 otherwise

xi3 =

{
1 if ith person is a data scientist

0 otherwise

I One level is usually left without a dummy variable since
otherwise the model is over-parametrized

I Adding a constant α to all coefficients of variable Xi and
subtracting α from the intercept has net effect zero

I Read Sec. 3.3.1 (Qualitative Predictors) of the textbook
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Linear classification via regression

I As we have seen, minimising squared error in linear regression
has a nice closed form solution (if inverting a p × p matrix is
feasible)

I How about using the linear predictor f (x) = β · x for
classification with a binary class label y ∈ {−1, 1 } through

ŷ = sign(f (x)) =

{
+1, if β · x ≥ 0

−1, if β · x < 0

I Given a training set (x1, y1), . . . , (xn, yn), it is computationally
intractable to find the coefficient vector β that minimises the
0–1 loss

n∑
i=1

I[yi (β·xi )<0]
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Linear classification via regression (2)

I One approach is to replace 0-1 loss I[yi (β·xi )<0] with a
surrogate loss function — something similar but easier to
optimise

I In particular, we could replace I[yi (β·xi )<0] by the squared

error (yi − β · xi )2
I learn β using least squares regression on the binary

classification data set (with yi ∈ {−1,+1 })
I use β in linear classifier ĉ(x) = sign(β · x)

I advantage: computationally efficient

I disadvantage: sensitive to outliers (in particular, “too good”
predictions yi (β · xi )� 1 get heavily punished, which is
counterintuitive)

I We’ll return to this a while
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The Perceptron algorithm (briefly)

NB: The perceptron is just mentioned in passing — not required
for the exam. However, the concepts introduced here (linear
separability and margin) will be useful in what follows.

I The perceptron algorithm is a simple iterative method which
can be used to train a linear classifier

I If the training data (xi , yi )
n
i=1 is linearly separable, i.e. there is

some β ∈ Rp such that yi (β · xi ) > 0 for all i , the algorithm is
guaranteed to find such a β

I The algorithm (or its variations) can be run also for
non-separable data but there is no guarantee about the result
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Perceptron algorithm: Main ideas

I The algorithm keeps track of and updates a weight vector β

I Each input item is shown once in a sweep over the training
data. If a full sweep is completed without any
misclassifications then we are done, and return β that
classifies all training data correctly.

I Whenever ŷi 6= yi we update β by adding yixi . This turns β
towards xi if yi = +1, and away from xi if yi = −1
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Current state of β (denoted by w in the figure)
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Red point classified correctly, no change to β
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Green point classified correctly, no change to β
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Green point misclassified, will change β as follows...
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Adding yixi to current weight vector β to obtain new weight vector
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Perceptron algorithm: Illustration

training example of class +1
training example of class –1

w

Adding yixi to current weight vector β to obtain new weight vector

Note that the length of β is irrelevant for classification
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Margin

I Given a data set (xi , yi )
n
i=1 and γ > 0, we say that a

coefficient vector β separates the data with margin M if for
all i we have

yi (β · xi )
‖β‖2

≥ M

I Explanation
I yi (β · xi ) ≥ 0 means we predict the correct class

I |β · xi | / ‖β‖2 is Euclidean distance between point xi and
hyperplane β · x = 0

w⇤

�

β

M
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Max margin classifier and SVM: Terminology

I Maximal margin classifier (Sec. 9.1.3): Find β that
classifies all instances correctly and maximizes the margin M

Its special cases:

I Support vector classifier (Sec. 9.2): Maximize the soft
margin M allowing some points to violate the margin (and
even be misclassified), controlled by a tuning parameter C :

yi (β · xi ) ≥ M(1− εi )

εi ≥ 0,
n∑

i=1

εi ≤ C

subject to ‖β‖2 = 1

I Support vector machine (SVM; Sec. 9.3): Non-linear
version of the support vector classifier obtained by defining a
kernel function K (xi , xj)
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348 9. Support Vector Machines
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FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.

The fact that the support vector classifier’s decision rule is based only
on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of
the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule

Fig. 9.7 in (James et al., 2013)
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Observations on max margin classifiers

I Consider the linearly separable case εi ≡ 0.

I The maximal margin touches a set of training data points xi ,
which are called support vectors

Fig. 9.3 in (James et al., 2013)
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Observations on max margin classifiers (2)

I Given a set of support vectors, the coefficients defining the
hyperplane can be defined as

β̂ =
n∑

i=1

ciyixi ,

with some ci ≥ 0, where ci > 0 only if the ith data point
touches the margin

I In other words, the classifier is defined by a few data points

I A similar property holds for the soft margin: the more the ith
point violates the margin, the larger ci , and for points that do
not violate the margin, ci = 0
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Observations on max margin classifiers (3)

I The optimization problem for both hard and soft margin can
be solved efficiently using the Lagrange method

I The details are beyond our scope (but interesting!)

I A key property is that the solution only depends on the data
through the inner products 〈xi , xj〉 = xi · xj (and the values yi )

I This follows from the expression of the coefficient vector β̂ as
a linear combination of the support vectors.

I Given a new (test) data point x, we can classify it based on
the sign of

f̂ (x) = β̂ · x =

(
n∑

i=1

ciyixi

)
· x =

n∑
i=1

ciyi 〈xi , x〉
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Relation to other linear classifiers

I The soft margin minimization problem of the support vector
classifier can be rewritten as an unconstrained problem

min
β

{
n∑

i=1

max[0, 1− yi (β · xi )] + λ ‖β‖22

}

I Compare this to penalized logistic regression

min
β

{
n∑

i=1

ln(1 + exp(−yi (β · xi ))) + λ ‖β‖22

}

I or ridge regression

min
β

{
n∑

i=1

(yi − β · xi )2 + λ ‖β‖22

}

I These are all examples of common surrogate loss functions
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Relation to other linear classifiers (2)

I Compare the hinge loss max[0, 1− yi (β · x)] (black)
and the logistic loss exp(−yi (β · x)) (green)

Fig. 9.12 in the (James et al., 2013)
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Kernel trick

I Since the data only appear through 〈xi , xj〉, we can use the
following kernel trick

I Imagine that we want to introduce non-linearity by mapping
the original data into a higher-dimensional representation

I remember the polynomial example xi 7→ 1, xi , x
2
i , x

3
i , . . .

I interaction terms are an another example:
(xi , xj) 7→ (xi , xj , xixj)

I Denote this mapping by Φ : Rp → Rq, q > p

I Define the kernel function as K (xi , x) = 〈Φ(xi ),Φ(x)〉

I The trick is to evaluate K (xi , x) without actually computing
the mappings Φ(xi ) and Φ(x)
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Kernels

I Popular kernels:
I linear kernel: K (xi , x) = 〈xi , x〉
I polynomial kernel: K (xi , x) = (〈xi , x〉+ 1)d

I (Gaussian) radial basis function: K (xi , x) = exp(−γ ‖xi − x‖22)

I For example, the radial basis function (RBF) kernel
corresponds to a feature mapping of infinite dimension!

I The same kernel trick can be applied to any learning
algorithm that can be expressed in terms of inner products
between the data points x

I perceptron

I linear (ridge) regression

I Gaussian process regression

I principal component analysis (PCA)

I ...
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SVM: Example

From (James et al., 2013)

I Three SVM results on the same data, from left to right:
Linear kernel, polynomial kernel d = 3, RBF

library(e1071)

fit = svm(y∼., data=D, kernel="radial", gamma=1, cost=1)

plot(fit, D)
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SVMs: Properties

I The use of the hinge loss (soft margin) as a surrogate for the
0–1 loss leads to the support vector classifier

I With a suitable choice of kernel, the SVM can be applied in
various different situations

I string kernels for text, structured outputs, ...

I The computation of pairwise kernel values K (xi , xj) may
become intractable for large samples but fast techniques are
available

I SVM is one of the overall best out-of-the-box classifiers

I Since the kernel trick allows complex, non-linear decision
boundaries, regularization is absolutely crucial:

I the tuning parameter C is typically chosen by cross-validation
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