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Linear

v

models

A refresher about linear models (see linear regression,
Lecture 3):

We consider features x = (xi, ..., Xp) € RP throughout this
chapter

Function f: RP — R is linear if for some 3 € RP it can be
written as

p
Fx)=B-x=>_ Bix
=1

By including a constant feature x; = 1, we can express models
with an intercept term using the same formula

(3 is often called coefficient or weight vector



Multivariate linear regression

» We assume matrix X € R"P has n instances x; as its rows
and y € R" contains the corresponding labels y;

» In the standard linear regression case, we write
y=XB+e€
where the residual ¢; = y; — 3 - x; indicates the error of f(x)

on data point (x;, ;)

» Least squares: Find 3 which minimises the sum of squared

residuals
n

2
> = el

i=1
» Closed-form solution (assuming n > p):

B =(X"x)"'xy



Further topics in linear regression: Feature transformations

» Earlier (Lecture 3), we already discussed non-linear
transformations:
e.g., a degree 5 polynomial of x € R

f(xi) = Bo + Bixi + Box? + B3x? + Baxi + Bsx}

> Likewise, we mentioned the possibility to include interactions
via cross-terms

f(x;) = Bo + Bixi1 + Baxiz + Biaxi1xiz



Further topics in linear regression: Dummy variables

» What if we have qualitative/categorical (instead of
continuous) features, like gender, job title, pixel color, etc.?

> Binary features with two levels can be included as they are:
X; € {O, 1 }

» Coefficient can be interpreted as the difference between
instances with x; = 0 and x; = 1: e.g., average increase in
salary

» When there are more than two levels, it doesn’t usually make
sense to assume linearity

f((x1,x2, 1)) — f((x1, 2, 0)) = f((x1, %2, 2)) — f((x1, 2, 1))

especially when the encoding is arbitrary:
red = 0, green = 1, blue = 2



Further topics in linear regression: Dummy variables (2)

» For more than two levels, introduce dummy (or indicator)
variables:

1 if ith person is a student
Xj1 = .
0 otherwise

1 if ith person is a physician
Xij2 = .
0 otherwise

1 if ith person is a data scientist
Xi3 = .
0 otherwise

» One level is usually left without a dummy variable since
otherwise the model is over-parametrized
» Adding a constant « to all coefficients of variable X; and
subtracting « from the intercept has net effect zero

» Read Sec. 3.3.1 (Qualitative Predictors) of the textbook



Linear classification via regression

» As we have seen, minimising squared error in linear regression
has a nice closed form solution (if inverting a p X p matrix is
feasible)

» How about using the linear predictor f(x) = 3 - x for
classification with a binary class label y € { —1,1} through

11, ifB-x>0

y = sign(f(x)) = {_1 if3-x<0

» Given a training set (x1, Y1), - -, (Xn, ¥n), it is computationally
intractable to find the coefficient vector 3 that minimises the
0-1 loss

Z l[)’i(ﬁ'xi)<0]
i=1



Linear classification via regression (2)

» One approach is to replace 0-1 loss /[, (3.x;)<0] With a
surrogate loss function — something similar but easier to
optimise

> In particular, we could replace I, (3.x,)<0] by the squared

error (y; — B - x;)?
» learn B using least squares regression on the binary
classification data set (with y; € { —1,+1})

» use 3 in linear classifier &(x) = sign(3 - x)
» advantage: computationally efficient

» disadvantage: sensitive to outliers (in particular, “too good”
predictions y;(3 - x;) > 1 get heavily punished, which is
counterintuitive)

» We'll return to this a while

10,



The Perceptron algorithm (briefly)

NB: The perceptron is just mentioned in passing — not required
for the exam. However, the concepts introduced here (linear
separability and margin) will be useful in what follows.

» The perceptron algorithm is a simple iterative method which
can be used to train a linear classifier

» If the training data (x;, y;)"_; is linearly separable, i.e. there is
some (3 € RP such that y;(3-x;) > 0 for all i, the algorithm is
guaranteed to find such a 3

» The algorithm (or its variations) can be run also for
non-separable data but there is no guarantee about the result

11,



Perceptron algorithm: Main ideas

» The algorithm keeps track of and updates a weight vector 3

> Each input item is shown once in a sweep over the training
data. If a full sweep is completed without any
misclassifications then we are done, and return 3 that
classifies all training data correctly.

» Whenever y; # y; we update 3 by adding y;x;. This turns 3
towards x; if y; = +1, and away from x; if y; = —1

12,



Perceptron algorithm: lllustration

0..[ o° w e training example of class +1
° . o/"" R ® training example of class —1
o o o ° ) °e [ )
° ° > \® ..

Current state of 3 (denoted by w in the figure)
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Perceptron algorithm: lllustration

0..[ °o* w e training example of class +1
° . o/"" R ® training example of class —1
o o o ° ) °e [ )
° ° > \® ..

Red point classified correctly, no change to 3
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Perceptron algorithm: lllustration

0..[ o° w e training example of class +1
° o o/"" R ® training example of class —1
o o o ° ) °e [ )
° ° > \® ..

Green point classified correctly, no change to 3

13,



Perceptron algorithm: lllustration

0..[ o° w e training example of class +1
° . o/"" R ® training example of class —1
e ,° ¢ * .o
® . » \® ..

Green point misclassified, will change 3 as follows...
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Perceptron algorithm: lllustration

N
[ ]
o .[ e e training example of class +1
e.>0 -
e o I L - ® training example of class —1
[ ]
o’ *°le .o
° p © ..

Adding y;x; to current weight vector 3 to obtain new weight vector
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Perceptron algorithm: lllustration

N
[ ]
o .[ e e training example of class +1
e.>0 .
e o I L - ® training example of class —1
° o
. e ,° ° °
° p © ..

Adding y;x; to current weight vector 3 to obtain new weight vector

Note that the length of 3 is irrelevant for classification
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Margin

> Given a data set (x;,y;)"_; and v > 0, we say that a
coefficient vector 3 separates the data with margin M if for
all 7 we have

yi(B - xj) M
18I, =

» Explanation
» yi(B-x;) > 0 means we predict the correct class

» |B-xi| /|8, is Euclidean distance between point x; and
hyperplane 3-x =10

14,



Max margin classifier and SVM: Terminology

» Maximal margin classifier (Sec. 9.1.3): Find 3 that
classifies all instances correctly and maximizes the margin M

Its special cases:

» Support vector classifier (Sec. 9.2): Maximize the soft
margin M allowing some points to violate the margin (and
even be misclassified), controlled by a tuning parameter C:

yi(B-xi) = M(1—¢j)
n

€20, Y <C
i=1

subject to |3, =1

» Support vector machine (SVM; Sec. 9.3): Non-linear
version of the support vector classifier obtained by defining a

kernel function K(x;,x;) .
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Fig. 9.7 in (James et al., 2013)



Observations on max margin classifiers

» Consider the linearly separable case ¢; = 0.

» The maximal margin touches a set of training data points x;,
which are called support vectors

Xo
P

X Fig. 9.3 in (James et al., 2013)
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Observations on max margin classifiers (2)

» Given a set of support vectors, the coefficients defining the
hyperplane can be defined as

n
B = E CiyiXi,
i—1

with some ¢; > 0, where ¢; > 0 only if the ith data point
touches the margin

> In other words, the classifier is defined by a few data points

» A similar property holds for the soft margin: the more the ith
point violates the margin, the larger ¢;, and for points that do
not violate the margin, ¢; =0

18,



Observations on max margin classifiers (3)

» The optimization problem for both hard and soft margin can
be solved efficiently using the Lagrange method

» The details are beyond our scope (but interesting!)

> A key property is that the solution only depends on the data
through the inner products (x;,x;) = x; - x; (and the values y;)

» This follows from the expression of the coefficient vector B as
a linear combination of the support vectors.

» Given a new (test) data point x, we can classify it based on
the sign of

fx)=8-x= (Z Ciyixi> X = Z Ciyi{Xi, )
i—1 i—1

19,



Relation to other linear classifiers

» The soft margin minimization problem of the support vector
classifier can be rewritten as an unconstrained problem

mﬁin {Z max[0,1 — yi(B - x;)] + A ||5H§}
i=1
» Compare this to penalized logistic regression
min {Z In(1+ exp(—yi(B - x))) + A \BH?}
i=1

> or ridge regression
n
min {Z(yf ~Bx) ) uﬂué}
i=1

> These are all examples of common surrogate loss functions

20,



Relation to other linear classifiers (2)

» Compare the hinge loss max[0,1 — y;(83 - x)] (black)
and the logistic loss exp(—y;(8 - x)) (green)

@ m SVM Loss
= | ogistic Regression Loss
©
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Yi(Bo + Brwin + ... + Bpip)
Fig. 9.12 in the (James et al., 2013)
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Kernel trick

> Since the data only appear through (x;,x;), we can use the
following kernel trick

» Imagine that we want to introduce non-linearity by mapping
the original data into a higher-dimensional representation

» remember the polynomial example x; — 1, x;, x?, x>

> interaction terms are an another example: B
(xiy x7) = (%3, X, Xix;)
> Denote this mapping by ® : RP — R9, g > p
» Define the kernel function as K(x;,x) = (®(x;), P(x))
» The trick is to evaluate K(x;,x) without actually computing

the mappings ®(x;) and (x)

22,



Kernels

» Popular kernels:
> linear kernel: K(x;,x) = (x;,x)
» polynomial kernel: K(x;,x) = ((x;,x) + 1)¢

> (Gaussian) radial basis function: K(x;,x) = exp(—~ [|x; — x||3)

» For example, the radial basis function (RBF) kernel
corresponds to a feature mapping of infinite dimension!

» The same kernel trick can be applied to any learning
algorithm that can be expressed in terms of inner products
between the data points x

> perceptron

v

linear (ridge) regression

» Gaussian process regression

v

principal component analysis (PCA)



SVM: Example
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From (James et al., 2013)

» Three SVM results on the same data, from left to right:
Linear kernel, polynomial kernel d = 3, RBF

library(e1071)

fit = svm(y~., data=D, kernel="radial", gamma=1, cost=1)

plot(fit, D)



SVMs

. Properties

The use of the hinge loss (soft margin) as a surrogate for the
0-1 loss leads to the support vector classifier

With a suitable choice of kernel, the SVM can be applied in
various different situations

» string kernels for text, structured outputs, ...

The computation of pairwise kernel values K(x;,x;) may
become intractable for large samples but fast techniques are
available

SVM is one of the overall best out-of-the-box classifiers

Since the kernel trick allows complex, non-linear decision
boundaries, regularization is absolutely crucial:

» the tuning parameter C is typically chosen by cross-validation

25,



