
582631 Introduction to Machine Learning, Fall 2016
Set 5

Due December 8th–9th. NB: Deadline for returning solutions my email (in case you can’t attend a session) is
12:15 on Friday.

Problem 1 (2 + 3 + 3) Decision trees

This is a continuation of last week’s decision tree exercise (Prob. 4.3).

(a) (2 points) As it turned out, it is hard to get non-zero gain when impurity is defined as misclassification
rate (p. 29 of the slides of Lectures 7–8).

Evaluate the gain of the same splits as you chose last week using entropy and Gini measures of impurity.

(b) (3 points) Consider the plot on p. 30 of the slides (Lecture 7–8), where misclassification rate, Gini, and
entropy are plotted as a function of the probability of one class, when there are two class values (binary
classification).

Consider a split that produces subsets D1 and D2, with relative sizes α = |D1|/|D| and 1−α = |D2|/|D|.
Let p0(Di) denote the probability (or relative frequency) of class Y = 0 in subset Di, and let Q(Di) denote
the corresponding impurity values for i ∈ {1, 2}.
Suppose that the majority class is the same in both D1 and D2, i.e., both subsets correspond to points
on the same side of the “hump” at p0 = 1/2 in the plot. (So for example, if class 0 is the majority class,
then p0(Di) > 1/2 for both i ∈ {1, 2}, and we are on the right half of the figure.)

Prove that under these circumstances, if we use misclassification rate as a measure of impurity, the gain
is exactly zero.

Hint: Draw a figure and use it to help your reasoning: Include the (x, y) points (p0(D1), Q(D1)),
(p0(D2), Q(D2)), and (p0(D), Q(D)) on the graph. For example, suppose the whole set D has size
|D| = 168 with class distribution p0(D) = k/|D| = 130/168 ≈ 0.77 where k = 130 is the number of
goals in set D. Further, suppose that the subsets D1 and D2 are of respective sizes |D1| = 52 and
|D2| = 116, and that the respective class distributions are p0(D1) = k1/|D1| = 49/52 ≈ 0.94 and
p0(D2) = k2/|D2| = 81/116 ≈ 0.70. Observe that we have 0.70 · 116/168 + 0.94 · 52/168 ≈ 0.77, i.e., the
class distribution in D can be expressed as a linear combination of the class distributions in D1 and D2.

Figure out how the position of the third point depends on the first two in general. You can use concerete
example values to come up with a hypothesis and then prove (or disprove!) it formally.

(c) (3 points) Still on the same issue: Prove formally that when using the Gini index or the entropy, the gain
is always positive (> 0) unless p0(D1) = p0(D2).

Hint: Jensen’s inequality. You can use the fact that both the Gini index and the entropy are concave
functions without proof.

The point in these exercises is to appreciate the fact that even if the ultimate goal is to minimize misclassification
error, other measures may be better at directing the tree building process towards useful splits — both the
entropy and the Gini index favour splits that make the probabilities p0(D1) and p0(D2) as different as possible.

Recall that when building a decision tree, we usually use entropy or Gini, while the pruning stage usually
uses the misclassification rate which matches the actual target (assuming that is indeed the misclassification
rate).

(Exercises continued on the next page...)
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Problem 2 (3 + 2 + 3 + 2 points) Naive Bayes, Bayes error, and interactions

Here too we continue last week’s exercises: this time Problem 4.2 (with naive Bayes and logistic regression on
discrete features X1 and X2).

What happened there is that both classifiers (NB and log.reg.) produced asymptotic error rate 0.4 as the
sample size was increased, which was not particularly interesting.

(a) (3 points) Repeat the steps in last week’s exercise 2 but evaluate the performance with the logarithmic
loss (log-loss) − log2 P (Y = c | X1 = x1, X2 = x2) instead of the zero–one loss. In other words, produce
probabilistic predictions for all the test instances and let the negative logarithm of the probility of the
actual (correct) class of the test instance be the loss. For example, if the model predicts P (Y = 0 | x) = 0.5,
P (Y = 1 | x) = 0.25, and P (Y = 2 | x) = 0.25, and the actual class value is 1, then the log-loss for that
test instance is − log2 0.25 = 2.

For logistic regression models produced using the function multinom from package nnet, you can extract
probabilistic predictions by using argument type="probs" in the predict function.

Interpret your findings in light of the Ng & Jordan paper from Set 2 of exercises. You can increase the
sample size to make sure the values have converged.

Hint: The sum of logarithmic losses should be a bit less than 14 500 (i.e., slightly less than 1.45 units
(bits) per test instance).

(b) (2 points) Last week you were told to use the naive Bayes classifier even though we could tell that the
features are not conditionally independent given the class.

This time, use the true class-conditional probabilities P (X | Y ) as specified in the tables in last week’s
exercises to implement a classifier. Thus, for example, you should use P (X1 = 1, X2 = 1 | Y = 2) = 0.0
instead of using a product of the form P (X1 | Y )× P (X2 | Y ).

The classifier that is obtained from the true distribution is called the Bayes classifier — see p. 37 onwards
in the textbook. It has the lowest possible (expected) error rate among all classifiers. Usually such a
thing is only of theoretical interest since in practice we almost never have the true distribution at hand.

Calculate the error rate of the Bayes classifier on the same test set (of size 10 000) as the naive Bayes
classifier. Plot the errors in the same graph; use dashed line for the Bayes error following the convention
in the textbook.

Hint: The Bayes error should be between 0.3 and 0.4.

(c) (3 points) Calculate the Bayes error by hand.

Hint: The probability you need to evaluate is

Pr[h(X1, X2) 6= Y ] =
∑

c∈{0,1,2}
x1∈{0,1}
x2∈{0,1,2}

P (Y = c)P (X1 = x1, X2 = x2 | Y = c) I[h(x1,x2)6=c]

where h : {0, 1}×{0, 1, 2} → {0, 1} is the Bayes classifier that maps feature vectors to the most probable
class value, and I[·] is an indicator function.

(d) (2 points) Include an interaction between the features in the logistic regression model by writing
multinom(Y ∼ X1 * X2, data = train)

where the * implies that an interaction should be included in the model, instead of + which assumes only
additive effects.

Evaluate the misclassification rate and compare it to the performance of the naive Bayes classifier, the
logistic regression model without interactions, and the Bayes error (dashed line).

Hint: The error rate of the logistic model with interactions should converge to the Bayes error as the
sample size grows.

(Exercises continued on the next page...)
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Problem 3 (2 + 4 points) SVMs

To prepare for this exercise, you should follow the steps in the Lab on pages 359–364 on the textbook. (You
don’t have to do the part on ROC curves.)

(a) (2 points) Generate n = 200 data points from the same source as in last week’s Exercise 1 (two independent
Gaussians with zero mean and variances 1 and 16 respectively, uniform class distribution). You’ll get
roughly 100 instances from each class.

Apply a support vector classifier (an SVM with a linear kernel) with a couple of different tuning parameters
(argument cost), and visualize the decision boundary with plot(fit, data=data).

Confirm that the linear classifier has no hope of performing well in this case.

Then try a polynomial kernel of degree 2 and an RBF kernel to see that performance improves. Experiment
with different tuning parameters (see the documentation of function svm and the Lab in the textbook for
information about the parameters).

Secondly, add the transformed features X3 = X2
1 , X4 = X2

2 (squared features) to the data and try again.
Note that you will not be able to visualize the classification boundary but you can use predict to evaluate
the predictions on the training data to verify that even a linear kernel will now perform better.

Why is there an improvement?

(b) (4 points) Exercise 8 on p. 371 of the textbook.
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