
582631 Introduction to Machine Learning, Fall 2016
Exercise set IV
Model solutions

1.

(a) Using the assumption about class-conditional independence of X1 and X2, and denoting
the density functions of conditional distributions as fX|Y=c, we get from the Bayes
formula:

P (Y = 1|X1 = 1, X2 = 2)

=
fX|Y=1(1, 2)P (Y = 1)

fX|Y=1(1, 2)P (Y = 1) + fX|Y=−1(1, 2)P (Y = −1)

=
fX1|Y=1(1)fX2|Y=1(2)

fX1|Y=1(1)fX2|Y=1(2) + fX1|Y=−1(1)fX2|Y=−1(2)
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≈ 0.3944.

(b) See Fig. 1.

(c) Both the naive Bayes classifier with Gaussian densities and QDA are based on the Bayes
formula

p(y | x) = p(x | y)p(y)
p(x)

,

and therefore, assuming equivalent class distributions p(y), we only need to show that
for the given class-conditional distribution implied by a naive Bayes classifier p(x | y),
we can construct a QDA classifier with the same class-conditional distribution.
Since the naive Bayes model implies that X1 and X2 are independent given Y , we are
looking for a bivariate Gaussian density for the QDA model that is equivalent to the
product of two Gaussian densities. This tells us that the covariance matrix must be
diagonal.
Furthermore, given that the class-conditional distribution under the QDA model must
match that of the NB model, and in particular, that the means and variances of X1 and
X2 must match those of the NB model, we arrive at the following QDA parameters:

µ+ = (µ+,1, µ+,2) = (0, 0),

µ− = (µ−,1, µ−,2) = (0, 0),

and

Σ+ =

[
σ2+,1 0

0 σ2+,2

]
=

[
16 0
0 16

]
,

Σ− =

[
σ2−,1 0

0 σ2−,2

]
=

[
1 0
0 1

]
.
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Kuva 1: Illustration of the posterior probability P (Y = +1 |x)

p(x | y) = fX|Y =y(x)
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This demonstrates that a Gaussian naive Bayes is a special case of QDA with diagonal
covariance matrices (this is a naive Bayes assumption that predictors are independent
given a class).

(d) Consider a classification problem with p predictors and k classes. For the expected values
µ1, . . . , µk, where µi = (µi,1, . . . , µi,p) for all i 2 {1, . . . , k} the number of parameters
is kp.

To determine a symmetric matrix, 1 + 2 + · · · + (p � 1) + p = p(p+1)
2 components

has to be specified. So, in the general case (full covariance matrices), the number of
free parameters required for the covariance matrices ⌃1, . . . ,⌃k is kp(p+1)

2 . With the
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Figure 1: Illustration of the posterior probability P (Y = +1 |x)

Having made these choices, we can verify that the class-conditional distributions match.

Fix y ∈ {−1,+1} and consider a conditional density p(x | y) under the naive Bayes
model.

p(x | y) = fX|Y=y(x)

= fX1|Y=y(x1)fX2|Y=y(x2)

=
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We can now use Exercise 3.2a from last week to notice that this is a density function of
bivariate normal distribution with expected value µy and covariance matrix Σy defined
above:
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)
.

Thus, the NB model is equivalent the the QDA model with the chosen parameters.

(d) Consider a classification problem with k classes. Both the Gaussian NB and the QDA
classifiers require mean parameters for each class and each feature. The number of such
parameters is kp.
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For QDA, the number of free parameters required for the covariance matrices Σ1, . . . ,Σk

is kp(p+1)
2 . In the NB case, we only need the variance of each feature, so kp variance

parameters in total.

In addition, both classifiers involve k class probabilities that must sum to one, which
means that the required number of free parameters is k − 1.

Thus, QDA requires altogether (k−1)+kp+ kp(p+1)
2 parameters. NB requires (k−1)+

kp + kp parameters. The difference grows with p since the number of free paramaters
is quadratic in p for QDA, but only linear in p for NB. Hence, for large p, QDA is more
prone to overfitting and requires a larger sample size to reach its asymptotic error.

3. An example decision tree is shown In Figure 2. First the data is split into upper half R1

and lower half {R2, . . . , R6}, then the lower half is split into a left corner R2 and the rest
{R3, . . . , R6}. The rest of the splits separate the right-most area from the remaining subset
in the order R3, R4 and R5.

The gains of the splits using misclassification error as impurity measure are tabulated in
Table 1. The only split to have positive is the last. This is a consequence of the fact that
the last split is the only one that leads to a change in the the majority class — the majority
of the shots overall (in all of the data) and in each of the subsets R1, . . . , R5 are goals, but
within subset R6 the saves make the majority.

In next week’s exercises, you will find that the situation is somewhat different when the
Gini index of the entropy is used to define impurity.
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Figure 2: Penalties shot in World cup up to South Africa 2010
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Table 1: Gains of the splits of the decision tree grown on the data set of Figure 2.
Split Q(D1) Q(D2) Q(D) gain(D1, D2)

R1 3/52 35/116 38/168 0
R2 0/21 35/95 35/116 0
R3 6/27 29/68 35/95 0
R4 10/26 19/42 29/68 0
R5 3/15 11/27 19/42 0.119
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