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Clustering
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Flat clustering: basic idea

I Each data vector xi is assigned to one of K clusters

I Typically K and a similarity measure is selected by the user,
while the chosen algorithm then learns the actual partition

I In the example below, K = 3 and the partition are shown
using color (red, green, blue)

X X

⇒
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Flat clustering: basic idea (2)

I In distance-based clustering
I data points in same cluster are similar to (near) each other

I data points in different clusters are dissimilar (far away) from
each other

I A common strategy is to represent the clusters as K
prototypes µ1, . . . ,µK and assigning each data point to the
closest prototype

I This can also be done for new (“test”) data points by assign
each new point to the nearest prototype

I Distances can be in principle anything but many methods are
well defined only for metric distances

I Alternative: In a probabilistic approach, similarity (nearness)
is replace by probability and prototypes are distributions
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Hierarchical clustering: basic idea
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I In this approach, data vectors are arranged in a tree, where
nearby (similar) vectors xi and xj should be placed close to
each other: e.g., x6 and x25 end up being siblings while x14 is
a distant cousin

I Any horizontal cut corresponds to a partitional clustering

I In the example above, the 3 colors have been added manually
for emphasis (they are not produced by the algorithm) 5 ,



Motivation for clustering

Understanding the data:

I Information retrieval:

organizing a set of documents for easy browsing (for example a
hierarchical structure to the documents)
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I Biology:

creating a taxonomy of species (phylogenetics), finding groups of
genes with similar function, etc
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I Medicine:

understanding the relations among diseases or psychological
conditions, to aid in discovering the most useful treatments
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FIGURE 14.12. Dendrogram from agglomerative hierarchical clustering with
average linkage to the human tumor microarray data.

chical structure produced by the algorithm. Hierarchical methods impose
hierarchical structure whether or not such structure actually exists in the
data.

The extent to which the hierarchical structure produced by a dendro-
gram actually represents the data itself can be judged by the cophenetic
correlation coefficient. This is the correlation between the N(N −1)/2 pair-
wise observation dissimilarities dii′ input to the algorithm and their corre-
sponding cophenetic dissimilarities Cii′ derived from the dendrogram. The
cophenetic dissimilarity Cii′ between two observations (i, i′) is the inter-
group dissimilarity at which observations i and i′ are first joined together
in the same cluster.

The cophenetic dissimilarity is a very restrictive dissimilarity measure.
First, the Cii′ over the observations must contain many ties, since only N−1
of the total N(N − 1)/2 values can be distinct. Also these dissimilarities
obey the ultrametric inequality

Cii′ ≤ max{Cik, Ci′k} (14.40)
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I Business:

grouping customers by their preferences or shopping behavior, for
instance for targeted advertisement campaigns

Et cetera, et cetera
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I Other motivations: simplifying the data for further
processing/transmission

I Micro-clustering for Big Data:

reduce the effective amount of data by considering only the
prototypes rather than the original data vectors

I Quantization (lossy compression):

saving disk space/bandwidth by only representing each point
by a ‘close enough’ prototype
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Distance-based clustering

I We are given a data set D = { x1, . . . , xn } ⊂ X and a notion
of similarity between elements of X

I The output will be a partition (D1, . . . ,DK ) of D:
I D1 ∪ · · · ∪ DK = D

I Di ∩ Dj = ∅ if i 6= j

I Alternatively, we can represent the partition by giving an
assignment mapping where j(i) = c if xi ∈ Dc

I We usually also output K exemplars µ1, . . . ,µK where each
data point is assigned to the cluster with closest exemplar

I number of clusters K is usually given as input; choosing a
“good” K is a separate (non-trivial) issue

11 ,



K-means

I The most popular distance-based clustering method is
K-means

I We specifically assume that X = Rp and use squared
Euclidean distance as dissimilarity measure

I Ideally, we would wish to find partition and exemplars that
minimise the total distance of data points from their assigned
exemplars

K∑
j=1

∑
x∈Dj

‖x− µj‖22 =
n∑

i=1

∥∥xi − µj(i)

∥∥2
2

I However minimising this exactly is computationally difficult
(NP-hard) so in practice we usually use heuristic algorithms
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Hard vs. soft clustering

I In soft clustering we assign to each pair xi and Dj a number

rij ∈ [0, 1] so that
∑K

j=1 rij = 1 for all i , and then minimise

n∑
i=1

K∑
j=1

rij ‖xi − µj‖22

I Hard clustering, which we discuss here, is the special case
where we require that for each i there is exactly one j(i) such
that ri ,j(i) = 1, and rij = 0 for j 6= j(i)

I Note that the optimum assignments are always hard, i.e.,
ri ,j(i) = 1 for some j(i)
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K-means algorithm

I We start by picking K initial cluster exemplars (for example
randomly from our data set)

I We then alternate between the following two steps, until
nothing changes any more:

I Keeping the examplars fixed, assign each data point to the
closest exemplar

I Keeping the assignments fixed, move each exemplar to the
center of its assigned data points

I In this context we call the exemplars cluster means. Notice
that generally they are not sample points in our data set, but
can be arbitrary vectors in Rd

I This is also known as Lloyd’s algorithm; see Algorithm 10.1 in
textbook
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K-means algorithm: pseudocode

I Input
I data set D = { x1, . . . , xn } ⊂ Rp

I number of clusters K

I Output
I partition D1, . . . ,DK

I cluster means (exemplars) µ1, . . . ,µK

I assignment mapping j : { 1, . . . , n } → { 1, . . . ,K }

I Algorithm
I Randomly choose initial µ1, . . . ,µK

I Repeat the following until µ1, . . . ,µK do not change:
I for i = 1, . . . , n: let j(i)← arg minj ‖xi − µj‖22
I for j = 1, . . . ,K : let Dj ← { xi | j(i) = j }
I for j = 1, . . . ,K : let µj ← 1

|Dj |
∑

x∈Dj
xi
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K-means: 2D example
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� I Data from the ‘Old faithful’ geyser (horizontal axis is duration
of eruption, vertical axis is waiting time to the next eruption,
both scaled to zero mean and unit variance)
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K-means: convergence

I We can show that the algorithm is guaranteed to converge
after some finite number of steps

I We look into changes of the cost function

Cost =
K∑
j=1

∑
x∈Dj

‖x− µj‖22 =
n∑

i=1

∥∥xi − µj(i)

∥∥2
2

at the two steps inside the main loop

I In first step, we assign each xi to j(i) such that
∥∥xi − µj(i)

∥∥2
2

is minimised
I In second step, we choose each µj as the mean of Dj , which

minimises
∑

x∈Dj
‖x− µj‖22 for a fixed Dj

I Showing that choosing the mean vector minimizes the sum of
squared errors is left as homework

I Hence, the cost never increases
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K-means: convergence (2)

I Based on the homework property (previous slide), the
minimum Cost can be computed given the cluster assignments

I There is a finite number Kn possible assignments, so there is
only a finite number of possible values for Cost

I Since Cost is non-increasing, it must eventually stabilise to
one value

I Notice that the value to which we converge
I is not guaranteed to be global optimum of Cost

I depends on initialisation of cluster means

I In practice, convergence usually takes a lot fewer than Kn

steps
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Space and time complexity

I Space requirements are modest, as (in addition to the data
itself) we only need to store:

1. The index of the assigned cluster for each datapoint xi

2. The cluster centroid for each cluster

I The running time is linear in all the relevant parameters, i.e.
O(MnKp), where M is the number of iterations, n the
number of samples, K the number of clusters, and p the
number of dimensions (attributes).

(The number of iterations M typically does not depend heavily on

the other parameters.)
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Influence of initialization

I The algorithm only guarantees that cost is non-increasing. It
is still local search, and does not in general reach the global
minimum.

Example 1:
8.2 K-means 503

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. (d) Iteration 4.

Figure 8.5. Poor starting centroids for K-means.

cluster, the centroids will redistribute themselves so that the “true” clusters
are found. However, Figure 8.7 shows that if a pair of clusters has only one
initial centroid and the other pair has three, then two of the true clusters will
be combined and one true cluster will be split.

Note that an optimal clustering will be obtained as long as two initial
centroids fall anywhere in a pair of clusters, since the centroids will redistribute
themselves, one to each cluster. Unfortunately, as the number of clusters
becomes larger, it is increasingly likely that at least one pair of clusters will
have only one initial centroid. (See Exercise 4 on page 559.) In this case,
because the pairs of clusters are farther apart than clusters within a pair, the
K-means algorithm will not redistribute the centroids between pairs of clusters,
and thus, only a local minimum will be achieved.

Because of the problems with using randomly selected initial centroids,
which even repeated runs may not overcome, other techniques are often em-
ployed for initialization. One effective approach is to take a sample of points
and cluster them using a hierarchical clustering technique. K clusters are ex-
tracted from the hierarchical clustering, and the centroids of those clusters are
used as the initial centroids. This approach often works well, but is practical
only if (1) the sample is relatively small, e.g., a few hundred to a few thousand
(hierarchical clustering is expensive), and (2) K is relatively small compared
to the sample size.

The following procedure is another approach to selecting initial centroids.
Select the first point at random or take the centroid of all points. Then, for
each successive initial centroid, select the point that is farthest from any of
the initial centroids already selected. In this way, we obtain a set of initial

20 ,



Example 2: 8.2 K-means 505

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

Figure 8.7. Two pairs of clusters with more or fewer than two initial centroids within a pair of clusters.

is less susceptible to initialization problems (bisecting K-means) and using
postprocessing to “fixup” the set of clusters produced.

Time and Space Complexity

The space requirements for K-means are modest because only the data points
and centroids are stored. Specifically, the storage required is O((m + K)n),
where m is the number of points and n is the number of attributes. The time
requirements for K-means are also modest—basically linear in the number of
data points. In particular, the time required is O(I ∗K ∗m∗n), where I is the
number of iterations required for convergence. As mentioned, I is often small
and can usually be safely bounded, as most changes typically occur in the

I One possible solution: Run the algorithm from many random
initial conditions, select the end result with the smallest cost.
(Nevertheless, it may still find very ‘bad’ solutions almost all
the time.)

21 ,



How to select the number of clusters?

I Not a priori clear what the ‘optimal’ number of clusters is:8.1 Overview 491

(a) Original points. (b) Two clusters.

(c) Four clusters. (d) Six clusters.

Figure 8.1. Different ways of clustering the same set of points.

in the sense of Chapter 4 is supervised classification; i.e., new, unlabeled
objects are assigned a class label using a model developed from objects with
known class labels. For this reason, cluster analysis is sometimes referred
to as unsupervised classification. When the term classification is used
without any qualification within data mining, it typically refers to supervised
classification.

Also, while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches
outside the traditional bounds of cluster analysis. For example, the term
partitioning is often used in connection with techniques that divide graphs into
subgraphs and that are not strongly connected to clustering. Segmentation
often refers to the division of data into groups using simple techniques; e.g.,
an image can be split into segments based only on pixel intensity and color, or
people can be divided into groups based on their income. Nonetheless, some
work in graph partitioning and in image and market segmentation is related
to cluster analysis.

8.1.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clusterings: hierarchical (nested)
versus partitional (unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

Hierarchical versus Partitional The most commonly discussed distinc-
tion among different types of clusterings is whether the set of clusters is nested

I The more clusters, the lower the cost, so need some form of
‘model selection’ approach

I Will discuss this a bit more in the context of clustering
validation strategies later
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Hierarchical clustering

I Dendrogram representation:

I Nested cluster structure

I Binary tree with datapoints (objects) as leaves

I Cutting the tree at any height produces a partitional clustering

I Example 1:
516 Chapter 8 Cluster Analysis: Basic Concepts and Algorithms

p1 p2 p3 p4

(a) Dendrogram.

p1

p2

p3
p4

(b) Nested cluster diagram.

Figure 8.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 8.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is described in Section 8.3.2.

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge
the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in Algorithm 8.3.

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

1: Compute the proximity matrix, if necessary.
2: repeat
3: Merge the closest two clusters.
4: Update the proximity matrix to reflect the proximity between the new

cluster and the original clusters.
5: until Only one cluster remains.
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Hierarchical clustering (2)

I Example 2:
8.3 Agglomerative Hierarchical Clustering 521
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(a) Complete link clustering.
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(b) Complete link dendrogram.

Figure 8.17. Complete link clustering of the six points shown in Figure 8.15.

are merged first. However, {3, 6} is merged with {4}, instead of {2, 5} or {1}
because

dist({3, 6}, {4}) = max(dist(3, 4), dist(6, 4))

= max(0.15, 0.22)

= 0.22.

dist({3, 6}, {2, 5}) = max(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5))

= max(0.15, 0.25, 0.28, 0.39)

= 0.39.

dist({3, 6}, {1}) = max(dist(3, 1), dist(6, 1))

= max(0.22, 0.23)

= 0.23.

Group Average

For the group average version of hierarchical clustering, the proximity of two
clusters is defined as the average pairwise proximity among all pairs of points
in the different clusters. This is an intermediate approach between the single
and complete link approaches. Thus, for group average, the cluster proxim-

I Height of horizontal connectors indicate the dissimilarity
between the combined clusters (details a bit later)
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Hierarchical clustering (3)

General approaches to hierarchical clustering:

I Divisive approach:

1. Start with one cluster containing all the datapoints.

2. Repeat for all non-singleton clusters:

I Split the cluster in two using some partitional clustering
approach (e.g. K-means)

I Agglomerative approach:

1. Start with each datapoint being its own cluster

2. Repeat until there is just one cluster left:

I Select the pair of clusters which are most similar and join
them into a single cluster

(The agglomerative approach is much more common, and we will
exclusively focus on it in what follows.)

25 ,



Linkage functions

I Agglomerative hierarchical clustering requires comparing
similarities between pairs clusters, not just pairs of points

I There are different linkage functions that generalise a notion
of dissimilarity Dis(x, y) between two points to apply to any
two sets of points A and B:

I single linkage Lsingle(A,B)

I complete linkage Lcomplete(A,B)

I average linkage Laverage(A,B)

I centroid linkage Lcentroid(A,B)

26 ,



Linkage functions (2)

I Single linkage (minumum) considers the closest pair of points
between the two clusters:

Lsingle(A,B) = min
x∈A,y∈B

Dis(x, y),

8.3 Agglomerative Hierarchical Clustering 517

Defining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example, many agglomerative hierarchical
clustering techniques, such as MIN, MAX, and Group Average, come from
a graph-based view of clusters. MIN defines cluster proximity as the prox-
imity between the closest two points that are in different clusters, or using
graph terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-based clusters as shown in Figure 8.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to be the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.) Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of points from different clusters. Figure 8.14
illustrates these three approaches.

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

If, instead, we take a prototype-based view, in which each cluster is repre-
sented by a centroid, different definitions of cluster proximity are more natural.
When using centroids, the cluster proximity is commonly defined as the prox-
imity between cluster centroids. An alternative technique, Ward’s method,
also assumes that a cluster is represented by its centroid, but it measures the
proximity between two clusters in terms of the increase in the SSE that re-

(Note that when working with similarity measures we instead
take the object pair with maximum similarity!)

27 ,



Linkage functions (3)

I Alternatively, we can try to enforce that clusters should have
all pairs of points reasonably close to each other

I This gives complete linkage (maximum):

Lcomplete(A,B) = max
x∈A,y∈B

Dis(x, y),

8.3 Agglomerative Hierarchical Clustering 517

Defining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example, many agglomerative hierarchical
clustering techniques, such as MIN, MAX, and Group Average, come from
a graph-based view of clusters. MIN defines cluster proximity as the prox-
imity between the closest two points that are in different clusters, or using
graph terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-based clusters as shown in Figure 8.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to be the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.) Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of points from different clusters. Figure 8.14
illustrates these three approaches.

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

If, instead, we take a prototype-based view, in which each cluster is repre-
sented by a centroid, different definitions of cluster proximity are more natural.
When using centroids, the cluster proximity is commonly defined as the prox-
imity between cluster centroids. An alternative technique, Ward’s method,
also assumes that a cluster is represented by its centroid, but it measures the
proximity between two clusters in terms of the increase in the SSE that re-

(Again, for similarity measures we instead take minimum of
the objectwise similarities!)
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Linkage functions (4)

I An intermediate criterion is averaging

Laverage(A,B) =
1

|A| |B|
∑

x∈A,y∈B
Dis(x, y)

8.3 Agglomerative Hierarchical Clustering 517

Defining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example, many agglomerative hierarchical
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to be the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
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technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of points from different clusters. Figure 8.14
illustrates these three approaches.

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity

If, instead, we take a prototype-based view, in which each cluster is repre-
sented by a centroid, different definitions of cluster proximity are more natural.
When using centroids, the cluster proximity is commonly defined as the prox-
imity between cluster centroids. An alternative technique, Ward’s method,
also assumes that a cluster is represented by its centroid, but it measures the
proximity between two clusters in terms of the increase in the SSE that re-

(With similarity measures we also just take the average value.)
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Linkage functions (5)

I Centroid based linkage is calculated as

Lcentroid(A,B) = Dis(µA,µB)

where µA and µB are the means of the vectors in each cluster:

µA =
1

|A|
∑
x∈A

x

µB =
1

|B|
∑
y∈B

y

30 ,



Hierarchical clustering (4)

Example 1:
8.3 Agglomerative Hierarchical Clustering 519
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Figure 8.15. Set of 6 two-dimensional points.

Point x Coordinate y Coordinate
p1 0.40 0.53
p2 0.22 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

Table 8.3. xy coordinates of 6 points.

p1 p2 p3 p4 p5 p6
p1 0.00 0.24 0.22 0.37 0.34 0.23
p2 0.24 0.00 0.15 0.20 0.14 0.25
p3 0.22 0.15 0.00 0.15 0.28 0.11
p4 0.37 0.20 0.15 0.00 0.29 0.22
p5 0.34 0.14 0.28 0.29 0.00 0.39
p6 0.23 0.25 0.11 0.22 0.39 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6
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Figure 8.15. Set of 6 two-dimensional points.

Point x Coordinate y Coordinate
p1 0.40 0.53
p2 0.22 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

Table 8.3. xy coordinates of 6 points.

p1 p2 p3 p4 p5 p6
p1 0.00 0.24 0.22 0.37 0.34 0.23
p2 0.24 0.00 0.15 0.20 0.14 0.25
p3 0.22 0.15 0.00 0.15 0.28 0.11
p4 0.37 0.20 0.15 0.00 0.29 0.22
p5 0.34 0.14 0.28 0.29 0.00 0.39
p6 0.23 0.25 0.11 0.22 0.39 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6

I Single-link:
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(b) Single link dendrogram.

Figure 8.16. Single link clustering of the six points shown in Figure 8.15.

is 0.11, and that is the height at which they are joined into one cluster in the
dendrogram. As another example, the distance between clusters {3, 6} and
{2, 5} is given by

dist({3, 6}, {2, 5}) = min(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5))

= min(0.15, 0.25, 0.28, 0.39)

= 0.15.

Complete Link or MAX or CLIQUE

For the complete link or MAX version of hierarchical clustering, the proximity
of two clusters is defined as the maximum of the distance (minimum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then a group of points is
not a cluster until all the points in it are completely linked, i.e., form a clique.
Complete link is less susceptible to noise and outliers, but it can break large
clusters and it favors globular shapes.

Example 8.5 (Complete Link). Figure 8.17 shows the results of applying
MAX to the sample data set of six points. As with single link, points 3 and 6

(The heights in the dendrogram correspond to linkage functions
Lsingle(A,B) when clusters A and B are combined.) 31 ,



Hierarchical clustering (5)

Example 2:
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Figure 8.15. Set of 6 two-dimensional points.

Point x Coordinate y Coordinate
p1 0.40 0.53
p2 0.22 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

Table 8.3. xy coordinates of 6 points.

p1 p2 p3 p4 p5 p6
p1 0.00 0.24 0.22 0.37 0.34 0.23
p2 0.24 0.00 0.15 0.20 0.14 0.25
p3 0.22 0.15 0.00 0.15 0.28 0.11
p4 0.37 0.20 0.15 0.00 0.29 0.22
p5 0.34 0.14 0.28 0.29 0.00 0.39
p6 0.23 0.25 0.11 0.22 0.39 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6
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Figure 8.15. Set of 6 two-dimensional points.

Point x Coordinate y Coordinate
p1 0.40 0.53
p2 0.22 0.38
p3 0.35 0.32
p4 0.26 0.19
p5 0.08 0.41
p6 0.45 0.30

Table 8.3. xy coordinates of 6 points.

p1 p2 p3 p4 p5 p6
p1 0.00 0.24 0.22 0.37 0.34 0.23
p2 0.24 0.00 0.15 0.20 0.14 0.25
p3 0.22 0.15 0.00 0.15 0.28 0.11
p4 0.37 0.20 0.15 0.00 0.29 0.22
p5 0.34 0.14 0.28 0.29 0.00 0.39
p6 0.23 0.25 0.11 0.22 0.39 0.00

Table 8.4. Euclidean distance matrix for 6 points.

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links com-
bine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 8.4 (Single Link). Figure 8.16 shows the result of applying the
single link technique to our example data set of six points. Figure 8.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 8.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 8.4, we see that the distance between points 3 and 6

I Complete-link:

(The heights in the dendrogram correspond to linkage functions
Lcomplete(A,B) when clusters A and B are combined.)
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(b) Complete link dendrogram.

Figure 8.17. Complete link clustering of the six points shown in Figure 8.15.

are merged first. However, {3, 6} is merged with {4}, instead of {2, 5} or {1}
because

dist({3, 6}, {4}) = max(dist(3, 4), dist(6, 4))

= max(0.15, 0.22)

= 0.22.

dist({3, 6}, {2, 5}) = max(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5))

= max(0.15, 0.25, 0.28, 0.39)

= 0.39.

dist({3, 6}, {1}) = max(dist(3, 1), dist(6, 1))

= max(0.22, 0.23)

= 0.23.

Group Average

For the group average version of hierarchical clustering, the proximity of two
clusters is defined as the average pairwise proximity among all pairs of points
in the different clusters. This is an intermediate approach between the single
and complete link approaches. Thus, for group average, the cluster proxim-

32 ,



Hierarchical clustering (6)

I Cluster shapes:

I Single-link can produce arbitrarily shaped clusters (joining
quite different objects which have some intermediate links that
connect them)

I Complete-link tends to produce fairly compact, globular
clusters. Problems with clusters of different sizes.

I Group average is a compromise between the two

single link complete link

I Lack of a global objective function:

I In contrast to methods such as K-means, the agglomerative
hierarchical clustering methods do not have a natural objective
function that is being optimized.

33 ,



Hierarchical clustering (7)

I Computational complexity

I The main storage requirement is the matrix of pairwise
distances, containing a total of N(N − 1)/2 entries for N
datapoints. So the space complexity is: O(N2).

I Computing the distance matrix takes O(N2). Next, there are
O(N) iterations, where in each one we need to find the
minimum of the pairwise dissimilarities between the clusters.
Trivially implemented this would lead to an O(N3) algorithm,
but techniques exist to avoid exhaustive search at each step,
yielding complexities in the range O(N2) to O(N2 logN).

(Compare this to K-means, which only requires O(NK ) for K
clusters.)

Hence, hierarchical clustering is directly applicable only to
relatively small datasets. (But ask Ville again about approximate

nearest neighbors!)

34 ,



Clustering: summary

I K-means and hierarchical clustering are among the main tools
in data analysis. Everyone in the area must understand

I what the algorithms do

I how to interpret the results

I computational and other limitations of the algorithms

I Often goal is understanding the data, with no clearly defined
prediction or other task

I difficult to define good performace metrics

I difficult to give good procedures for “model selection” (e.g.
choosing number of clusters)

35 ,



Next week

I We’ll discuss Principal Component Analysis (PCA) next week
(you should have read Section 10 of the textbook by this week)

I Also, next week we’ll briefly discuss ensemble methods

I And then we are done!

I Except of course, there’s the exam...
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