
582631 Introduction to Machine Learning, Fall 2016
Exercise set V
Example solutions

1.

(a) Consider a first split into on the last week’s decision tree (Figure 1). A set D is the
whole data set, D1 is an upper half of the goal R1, and D2 =

⋃6
i=2Ri is the lower half

of the goal. Denote goals by 1, and saved shots by 0.

Now the proportions of the goals on the aforementioned sets are

p1(D) =
k

|D|
=

130

168
,

p1(D1) =
k1
|D1|

=
49

52
,

p1(D2) =
k2
|D2|

=
81

116
.

Gini indices for these sets are

Q(D) = p1(D)(1− p1(D)) + p0(D)(1− p0(D))

= 2p1(D)(1− p1(D)) = 2 · 130

168
· 38

168
≈ 0.350

Q(D1) = 2p1(D1)(1− p1(D1)) = 2 · 49

52
· 3

52
≈ 0.109

Q(D2) = 2p1(D2)(1− p1(D2)) = 2 · 81

116
· 35

116
≈ 0.421

Now the gain using the Gini index as an impurity measure can be computed as

gain({D1, D2}) = Q(D)−
(
|D1|
|D|

Q(D1) +
|D2|
|D|

Q(D2)

)
= 0.350−

(
52

168
· 0.109 +

116

168
· 0.421

)
≈ 0.025.

Values of the gain (using Gini) for the rest of the splits are shown in the following
table:

Split k1 k2 |D1| |D2| Q(D1) Q(D2) Q(D) gain(D1, D2)

R1 49 81 52 116 0.350 0.109 0.421 0.025
R2 21 60 21 95 0.421 0.000 0.465 0.040
R3 21 39 27 68 0.465 0.346 0.489 0.017
R4 16 23 26 42 0.489 0.473 0.496 0.002
R5 12 11 15 27 0.496 0.320 0.483 0.071
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Values of the cross-entropy (all logarithms are 2-based) for the sets in the first split are

Q(D) = −p1(D) log p1(D)− p0(D) log p0(D)

= −130

168
log

130

168
− 38

168
log

38

168
≈ 0.771,

Q(D1) = −p1(D1) log p1(D1)− p0(D1) log p0(D1),

= −49

52
log

49

52
− 3

52
log

3

52
≈ 0.318,

Q(D2) = −p1(D2) log p1(D2)− p0(D2) log p0(D2),

= − 81

116
log

81

116
− 36

116
log

36

116
≈ 0.883.

Now the gain using the cross entropy as an impurity measure can be computed as

gain({D1, D2}) = Q(D)−
(
|D1|
|D|

Q(D1) +
|D2|
|D|

Q(D2)

)
= 0.771−

(
52

168
· 0.318 +

116

168
· 0.883

)
≈ 0.063.

Values of the gain (using cross entropy) for the rest of the splits are shown in the
following table:

Split k1 k2 |D1| |D2| Q(D1) Q(D2) Q(D) gain(D1, D2)

R1 49 81 52 116 0.771 0.318 0.883 0.063
R2 21 60 21 95 0.883 0.000 0.949 0.106
R3 21 39 27 68 0.949 0.764 0.984 0.028
R4 16 23 26 42 0.984 0.961 0.993 0.003
R5 12 11 15 27 0.993 0.722 0.975 0.109

(b) Denote by k the number of observations of class Y = 1 in the set D, and by k1 and k2
in the subsets D1 and D2, respectively; k = k1 + k2 because {D1, D2} is a partition of
D. Because by assumption Y = 0 is a majority class in D, D1 and D2 :

Q(D) = 1−max
c
pc(D) = p1(D) =

k

|D|
,

Q(D1) = 1−max
c
pc(D1) = p1(D1) =

k1
|D1|

and

Q(D2) = 1−max
c
pc(D2) = p1(D2) =

k2
|D2|.

Substituting these into the formula for gain, we see that the gain is zero:

gain({D1, D2}) = Q(D)−Q({D1, D2})

= Q(D)−
(
|D1|
|D|

Q(D1) +
|D2|
|D|

Q(D2)

)
=

k

|D|
−
(
|D1|
|D|

k1
|D1|

+
|D2|
|D|

k2
|D2|

)
=

k

|D|
− k1 + k2
|D|

= 0.

The assumption that the majority class is the same in both D1 and D2 is essential for
the result: otherwise the gain will be positive.
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Figure 1: Penalties shot in World cup up to South Africa 2010

(c) When written as a function of p0(D), the proportion of class Y = 0 in the set D, both
Gini and cross-entropy are concave functions. This means that a straight line segment
connecting any two points on the curve is always below the curve.

Observe first that p(D) can be written as a convex combination of p0(D1) and p0(D2) :

p0(D) =
k

|D|
=
k1 + k2
|D|

=
|D1|
|D|
· k1
|D1|

+
|D2|
|D|
· k2
|D2|

= αp0(D1) + (1− α)p0(D2),

(1)

where

0 ≤ α =
|D1|
|D|

≤ 1.

Now consider the definition of gain:

gain(D1, D2) = Q(D)−
(
|D1|
|D|

Q(D1) +
|D2|
|D|

Q(D2)

)
= Q(D)−(αQ(D1) + (1− α)Q(D2)) .

The first term, Q(D) can be written using Eq. (1):

Q(D) ≡ Q(p0(D)) = Q(αp0(D1) + (1− α)p0(D2)).

Thus the gain is positive if and only if

Q(D) = Q(αp0(D1) + (1− α)p0(D2)) > αQ(D1) + (1− α)Q(D2).

This is exactly what Jensen’s inequality implies for concave functions.1

1Often, Jensen’s inequality is given in a form that states the opposite inequality for convex functions,
but this the same thing since for a concave function, f , we obtain a convex function −f , and the direction
of the inequality can be flipped back by multiplying both sides by −1.
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Figure 2: Entropy and Jensen’s inequality with points (p0(D1), Q(D1)) and (p0(D2), Q(D2))
connected by a straight line. At the point where p0(D) = αp0(D1) + (1 − α)p0(D2), the
line segment connecting the end points of the line segment is below the entropy curve. The
difference shown as a blue line gives the gain of the split.

By solving where this inequality holds as an equality, we see that the only solution, and
so also the only point where gain is zero is p0(D1) = p0(D2) for both Gini and cross-
entropy – or in fact, if α ∈ {0, 1}, in which case either Q(D1) or Q(D2) is undefined
since one side of the split would be empty.

2.

(c) The joint probability for the class value Y = 0 and the feature vector value X = (0, 0)
can be computed as

P (Y = 0, X1 = 0, X2 = 0) = P (Y = 0)P (X1 = 0, X2 = 0|Y = 0) = 0.4 · 0.2 = 0.08.

The joint probabilities for the rest of the values are computed with a same formula,
and can be found on the following table:

Y = 0 Y = 1 Y = 2

P (Y = y,X1 = 0, X2 = 0) 0.08 0.18 0.03
P (Y = y,X1 = 1, X2 = 0) 0.04 0.03 0.12
P (Y = y,X1 = 0, X2 = 1) 0.16 0.03 0.09
P (Y = y,X1 = 1, X2 = 1) 0.08 0.03 0.00
P (Y = y,X1 = 0, X2 = 2) 0.00 0.03 0.06
P (Y = y,X1 = 1, X2 = 2) 0.04 0.00 0.00

The value of the joint probability for the most likely class (and so the class predicted
by the Bayes optimal classifier) h(x1, x2) for each feature vector value X = (x1, x2)
is highlighted.
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Since the Bayes error rate is the probability that a true class value is not the most
likely class value, it can be computed by summing the probability of this event over
the feature vector values X = (x1, x2):

P (h(X1, X2) 6= Y ) = 1− P (h(X1, X2) = Y )

= 1−
1∑

x1=0

2∑
x2=0

P (Y = h(x1, x2), X1 = x1, X2 = x2)

= 1− (0.18 + 0.12 + 0.16 + 0.08 + 0.06 + 0.04)

= 0.36.
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