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Principal Component Analysis
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Dimension Reduction

I When the dimension of the data p is large, it is often hard to
visualize and process the data

I Classification and regression models easily overfit

I However, in many cases, the data can be approximately
summarized by a lower-dimensional representation

I For example, large questionnaire data sets can often be
reduced to a few dimensions (cf. psychological scales such as
Myers–Briggs, Keirsey)

I Intelligence quotient is a one-dimensional representation of set
of related but different skills (of completing puzzles)

I Visualization requires one-, two- or three-dimensional
representations
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Principal Componenent Analysis

I Principal Component Analysis is a common dimensionality
reduction technique

I The basic idea is to project the data onto a lower dimensional
subspace so that as much variance as possible is retained

I Assume from now on that data is zero-centered
I If the original instances are x′1, . . . , x

′
n, we replace them by

xi = x′i − x̄′ where x̄′ = 1
n

∑n
i=1 x

′
i

I Then
∑

i xi = 0 and therefore x̄j = 0 for j = 1, . . . , d
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Principal Componenent Analysis (2)

I Pick now a unit vector φ ∈ Rd and project all instances xi
along direction φ

I The projection of xi is φTxi , and the variance of the
projections is

n∑
i=1

(φTxi )
2 =

n∑
i=1

 p∑
j=1

φjxij

2

(recall the data is zero-centered)

I The unit vector φ that maximises this is the Eigenvector of
XTX corresponding to the largest Eigenvalue: eigen in R

I The resulting vector φ is called the first principal component
of the data
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Principal Componenent Analysis (3)

I In Principal Component Analysis (PCA) we first find
v1, . . . , vk , the Eigenvectors corresponding to k largest
Eigenvalues of XTX

I Then xi is replaced by its projection x′i onto subspace spanned
by v1, . . . , vk :

x′i = (vT1 xi , . . . , v
T
k xi )

I Among all possible linear projections of the data onto a k
dimensional subspace, this method

I maximises the variance of x′i
I minimises the “squared error”

∑
i ‖xi − x′i‖

2
2

I Other linear dimensionality reduction techniques include
Independent Component Analysis and Factor Analysis

I Furthermore, non-linear techniques such as Isomap (and other
manifold methods) and kernel PCA allow non-linear mappings

6 ,



Principal Componenent Analysis (3)

I Example

Source: (James et al., 2013), p. 230
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Principal Component Analysis (4)

I If the variables are independent, the principal components are
simply the k variables with the highest variance: then PCA
would simply do feature selection

I This also makes it clear that the scale of the variables (e.g.,
grams vs kilograms) is important

I Often the variances are forces to be equal by normalizing
them to be one
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Principal Components: Interpretation

I The principal components, i.e., the vectors φ, also have an
interpretation

I Remember that each φi is a unit vector of length p

I Each element φij is called the loading (“weight”) of the ith
principal component on variable j

I If variables j and j ′ have similar loadings, they are usually
correlated, for example:

I companies in the same business sector

I genes regulated by same factors

I users’ preferences on music or movie genres
(Four Weddings and a Funeral & Bridget Jones’ Baby vs
Prometheus & Rogue One)

I Read the textbook Sec. 10.2 for a more thorough explanation
of this
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Why dimensionality reduction?

I Understanding data: see where the variance comes from

I Visualisation: reduce to 2 or 3 dimensions and plot

I Whitening: it can be shown that the components are
uncorrelated

I Lossy image compression: keeping only some of the principal
components (with suitable pre-processing) may still give
adequate quality

I Image denoising: dropping the lower components may even
improve the quality of a noisy image

I Preprocessing for supervised learning (but directions with
large variance may not be the ones that matter for a
classification task)

10 ,


