582631 — 5 credits Introduction to Machine Learning

Lecturer: Teemu Roos Assistant: Ville Hyvönen

Department of Computer Science University of Helsinki

(based in part on material by Patrik Hoyer and Jyrki Kivinen)

November 1st-December 16th 2016

Lecture 13: Resampling and Ensemble Methods December 16, 2016

Performance and Generalisation

- A fundamental issue in machine learning is that we build models based on training data, but really care about performance on new unseen test data
- Generalisation refers to the learned model's ability to work well also on unseen data
 - good generalisation: what we learned from training data also applies to test data
 - poor generalisation: what seemed to work well on training data is not so good on test data

Resampling: Not Only Supervised Learning

- So far, we've considered supervised learning: learning to predict Y given X
 - resampling (cross-validation) can be used to obtain a number of train-test splits
 - averaging reduces variance of the test error estimate
- However, we can apply the same ideas for estimating any parameter (accuracy, coefficient, probability)
- ► For example:
 - estimate the variance of the least squares estimate of a regression coefficient (see the Lab in the textbook, pp. 195–197)
 - obtain confidence interval of the median of a variable (see the additional material on bootstrap confidence intervals on the course homepage)
 - combine different estimates, such as predictions or even hierarchical clustering solutions, etc.

Performance and Generalisation (2)

Important to notice:

- The test error rate (on a test/validation set that is separate from the training set) is a valid estimator of the error rate
- The purpose of cross-validation is just to obtain multiple train-test splits
- Hence, resampling is not *necessary* to estimate performance it simply helps to improve estimation accuracy!

Cross-validation

Recall that cross-validation gives us K (e.g., K = 10) train-test splits

1. Divide the data into K equal-sized subsets:

- 2. For j goes from 1 to K:
 - 2.1 Train the model(s) using all data except that of subset j
 - 2.2 Compute the resulting validation error on the subset j
- 3. Average the K results

When K = N (i.e. each datapoint is a separate subset) this is known as *leave-one-out* cross-validation.

Bootstrap

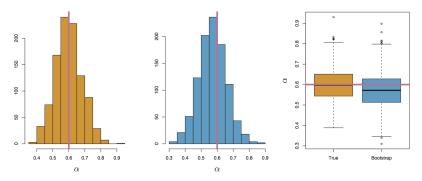
- Another popular resampling method is *bootstrap*
- The idea is to reuse the "training" set to obtain multiple data sets
- Not restricted to supervised learning (hence "training")
- These bootstrap samples can be used to estimate the variability of an estimate of parameter θ
- Bootstrap:
 - 1. Let $D = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ be the actual data
 - Repeat j = 1,..., K times:
 2.1 Create D_j^{*} by drawing n objects from D with replacement
 2.2 Obtain estimate θ̂_j^{*} from D_j^{*}
 - 3. Use the bootstrap estimates $\hat{ heta}_1^*,\ldots,\hat{ heta}_K^*$ to estimate variability

Bootstrap (2)

- ▶ Let *F* be the true underlying distribution
- Denote by F* the empirical distribution corresponding to the actual data D
 - For example, if D = (a, a, b, a), then $F^*(a) = 0.75$ and $F^*(b) = 0.25$
- The bootstrap samples D_i^* are drawn from F^*
- The bootstrap principle (assumption):
 - ► The empirical distribution F* is a good approximation of the true distribution F
 - ► The bootstrap distribution of the estimator $\hat{\theta}^*$ is a good approximation of the sampling distribution of $\hat{\theta}$
- ► The bootstrap principle implies that we can treat D^{*}₁,..., D^{*}_K as K replicates from the same distribution as D

Bootstrap (3)

Example (p. 189 in the textbook):



Source: (James et al., 2013)

Left: Histogram of estimates from 1000 simulated data sets (from F) *Right:* Histogram of estimates from 1000 bootstrap samples (from F^*)

Ensemble Method for Supervised Learning

- ► Having several training samples, D₁,..., D_K, would clearly be nice also for supervised learning
- ▶ We can combine the learned models $\hat{f}_1, \ldots, \hat{f}_K$ into an aggregate model \hat{f}_{agg}
- The aggregate model will have lower variance than the individual models
- If a learning method has high variance (but low bias), then \hat{f}_{agg} may be a very good model
- ▶ Bagging = bootstrap aggregation: f̂_j = f̂_j^{*} obtained from bootstrap (see textbook Sec. 8.2.1)

Bagging

- 1. Bootstrap to obtain D_1^*, \ldots, D_K^*
- 2. Learn models (classifiers or regression models) $\hat{f}_1^*, \ldots, \hat{f}_K^*$ from the bootstrap samples
 - for example, unpruned regression/decision trees (high variance, low bias)
- 3a. For regression, combine by averaging:

$$\hat{f}_{ ext{bag}}(\mathsf{x}) = rac{1}{\mathcal{K}}\sum_{j=1}^{\mathcal{K}}\hat{f}_{j}^{*}(\mathsf{x})$$

3b. For classification, combine by voting:

$$\hat{f}_{ ext{bag}}(\mathbf{x}) = ext{majority}\left(\hat{f}_1^*(\mathbf{x}), \dots, \hat{f}_K^*(\mathbf{x})\right)$$

Random Forests

- For decision trees, bagging tends to improve somewhat
- However, the trees are highly dependent in cases where the splits that maximize the gain are clearly better than the 2nd best splits
 - for example, always split according to X_3 first, then X_4 , etc.
- The trees can be forced to use different features by only allowing splits based on a random sample of the features
- For example, only consider about \sqrt{p} of all features at each split: the feature of with maximum gain is usually outside this set
- Trees constructed in bagging or random forests are usually not pruned since averaging a large number of trees reduces overfitting

Stacking and Boosting (not required for the exam)

The bagging approach is to combine the "base-learners" by averaging or voting. We can usually do better by either

- stacking: the idea in stacking is to apply a meta-level machine learning algorithm to learn how to best combine the base-learners
- boosting: boosting is an iterative method where new learning problems are constructed based on the errors made by the earlier solutions

Summary of Resampling and Ensemble Methods

Resampling methods

- Boosting and other resampling methods are generic statistical techniques that reuse the data to simulate repeated sampling
- Bootstrap can be used for various statistical estimation tasks such as obtaining confidence intervals

Ensemble Methods

- In supervised machine learning, ensemble methods build multiple hypotheses from multiple training sets obtained by resampling
- Examples:
 - cross-validation
 - bagging
 - random forests (a specific variant of bagging for decision trees)
 - stacking, boosting, ...