
582631 Introduction to Machine Learning

Programming project for separate examinations (Fall 2016)

General instructions:

• These instructions apply to projects associated with separate examinations after the cour-
se given in Fall 2016

• Return a written report (as PDF) and one directory (as a zip or tar.gz file) including all
your code.

• Do not include any of the data files in your solution file.

• Mention your name and student ID in the report.

• The report is the main basis for grading: All your results should be in the report. We also
look at the code, but we won’t however go fishing for results in your code.

• The code needs to be submitted as a file or set of files that can be run in the usual Linux
environment of the department. At least R, Matlab and Octave are supported. Commands
to run your programs must be given in the report.

• In your report, the results will often be either in the form of a figure or program output. In
both cases, add some sentences which explain what you are showing and why the results
are the answer to the question.

• If we ask you to test whether an algorithm works, always give a few examples showing
that the algorithm indeed works

• If there is something unclear about the problem setting, please ask by e-mail to the lec-
turer, teemu.roos@cs.helsinki.fi. However, I will not answer any “how-to” questions
about implementing the assignments. It’s part of your job to figure out all implementation
issues, using information available on the Internet etc. if needed.

Exercise 1

In this exercise you will implement the perceptron algorithm1 for training a linear classifier,
and apply it to the MNIST dataset of handwritten digits.

(a) First, create your own implementation of the perceptron algorithm (see Linear models
and Perceptron algorithm in the slides for Lectures 9–10).

To verify that it is working correctly, create simple small (N = 4 or similar) two-class
datasets in two dimensions for which it is easy to visually see whether the classes are
linearly separable or not, and apply the algorithm (with a bias term) to those datasets,
drawing the learned decision boundary into the scatterplot of the points. In this way, give

1Although the perceptron is currently not included in the learning objectives of the course, this exercise will
be relatively straightforward to implement based what you have learned. Feel free to use the internet to find
more information.

1



several (at least 5) examples showing that your implementation of the algorithm finds a
separating hyperplane when such a hyperplane exists, and does not converge when such
a hyperplane does not exist.

Hint: Recall that the bias term can be included by using the useful trick mentioned in
the slides of Lectures 3–4.

(b) Load the first N = 5000 MNIST digits. Take the first N/2 digits to be training set, and
the remaining N/2 to be the test set. Select only those digits in the training set which are
either zeros or ones, and apply your implementation of the perceptron algorithm to this
data. (Remember that the corresponding class vector has to be converted to ±1.) Does
the algorithm converge? After how many iterations? Applying the learned linear classifier
to the test set (using only those instances which are zeros or ones), what is the error rate?
Plot the pixel weights as an image (leaving out the bias weight), does it resemble a zero
or a one? Why or why not?

Hint: For instructions on how to read the data in R, see Exercise set 2 of the Fall 2016
course.

Exercise 2

In this exercise you will implement and apply the Naive Bayes classifier to the 20 newsgroups
dataset.

(a) Load the 20 newsgroups data. Let the first (by document ID) 90% of documents from
each newsgroup make up the training set, while the remaining documents constitute the
test set. Thus, the training set consists of docIDs [1:432, 481:1003, ...] while the test set
is given by [433:480, 1004:1061, ...] We will only consider the presence/absence of words
in documents, not their frequency, so we will not use the third column of the main data
matrix.

(b) For each combination 〈newsgroup,word〉, estimate the probability that a document from
that newsgroup contains that word. Apply Laplace smoothing. For each of the 20 news-
groups, list the 200 words that have the highest probabilities of occurrence (in decreasing
order of probability). This is a sanity check that the estimated probabilities make sense.
Also estimate the prior probabilities P (g) for the 20 different newsgroups g using Laplace
smoothing.

(c) Use the Naive Bayes classifier, based on the estimates from part (b) above, to classify
the training set. Then classify the test set. Give the resulting confusion matrix and the
corresponding error rates. Which newsgroups get mixed up most with each other? How
well is the classifier working?

Hint: The product of the feature probabilities tends to get very small which may cause
numerical problems. To avoid this, you can use a logarithmic scale to store the proba-
bilities, i.e., initialize a probability logp = logP (g) and add to it the terms logP (w1 |
g), . . . , logP (wn | g). The maximum probability class will have the highest logp value.

2



Exercise 3

In this exercise you will implement agglomerative hierarchical clustering and apply it to a small
subset of movies from the Movielens dataset.

(a) Create your own implementation of agglomerative hierarchical clustering, supporting both
the single-link and complete-link approaches. Your algorithm should take as input the
similarity matrix among the objects and output a list showing which clusters are joined
at each step of the algorithm, and at what similarity value the joins occur (i.e. the ‘height’
of the dendrogram at which each pair of combined clusters are joined).

(b) Create a simple dataset of 5 randomly selected points in 2 dimensions and plot these
points. Let the similarity between any two given points be equal to the negative eucli-
dean distance between the points. Compute the 5-by-5 similarity matrix and apply your
hierarchical clustering algorithm (using both single-link and complete-link) to this data-
set. Show the results. (This is a sanity check that your hierarchical clustering algorithm
is working properly.)

(c) Load the Movielens data. Let the similarity between any two movies be equal to the
Jaccard coefficient, i.e. the number of users who rated both movies divided by the number
of users who rated at least one of the movies. (The web page of the course has a function
that, given two different movie IDs, outputs this Jaccard coefficient.) Verify in your code
that the similarity between the movies Toy Story and GoldenEye is 0.217.

(d) Finally, select 20 movies that you are familiar with, such that some movies are clearly
similar to each other (in terms of the genre, director, actors, etc—sequels may be good
in this respect) while others are presumed to be more different. Compute the 20-by-20
similarity matrix among the movies you selected, using the Jaccard coefficient as the simi-
larity measure. Then cluster the 20 movies using your implementation of agglomerative
hierarchical clustering, both using the single-link and complete-link approaches. Show
and explain the results. Did they conform to what you expected, or is the clustering very
different from your intuitive understanding?

3


