

WordNet: An Linguistically-Motivated Concept Hierarchy

What Should a Term Hierarchy Provide by Way of Meaning?

WordNet is a "lightweight ontological" approach to lexical semantics WN provides a deep(-ish) hierarchy for nouns, but lacks explicit "meaning"

- Aristotelian Taxonomies, Description Logics WordNet, CYC, SUMO

More Explicit, BUT tries to draw sharp lines between overlapping categories

- Explicit Semantics / First-Order Logic SUMO, HowNet, CYC

Supports inference \& theorem proving, BUT highly selective and often sparse

- "Firthian" Corpus-Based Approaches

Firth, Sinclair, Hanks
Ecological sensitivity to word-usage, BUT lacks definitive ontology structure

Building Ontologies: Different Needs, Different Approaches

- Handcrafted, Knowledge-Engineering
E.g., CYC, WordNet, SUMO, HowNet, etc.
- Conversion from authoritative Sources
E.g., MRDs (Longman's LDOCE, etc.), Wikipedia
- Direct Extraction from Corpora using IE
E.g., by looking for " X is a [kind of] Y" patterns
- Indirect Extraction from Corpora (via clustering)
E.g., by acquiring diagnostic criteria, and clustering a taxonomy
- Bootstrapping from Corpora \World-Wide-Web
E.g., using a seed-base of existing knowledge to acquire more from text

The Knowledge Spectrum

- Knowledge-Based Inference Systems (e.g., CYC / CYC-ANSWERS)

Which countries will be capable of launching a spy satellite by 2010?

- Productive but expensive knowledge, expensive inference demands
- 80/20 Techniques (mapping standardized problems to procedural semantics)

Who is the CEO of IBM? \Rightarrow select CEO from Company where Name = 'IBM'

- Shallow Statistical Techniques and Information Retrieval
- The contestants in TREC 1999-2001 Q\&A (SMU Arrow/Falcon etc.)
- Q\&A = Shallow NLP + Information Retrieval + Information Extraction
- Knowledge-Base $=$ World-Wide-Web $/$ Private Text Archive
- Accidental Experts: Vast information reach but limited inference capability

Cyc's Knowledge-Rich Ontology Supports Analogy

HPKB How is a terrorist group's interest in group cohesion like a TQO125c criminal organization's interest in maintaining security?

Answer:

Like criminal organizations, terrorist groups have an interest in keeping their membership cohesive to maintain their security. A fragmented and disloyal membership can compromise a group's safety, undermine its operations, and threaten its survival.

Source(s):

1. Organized Crime in the Former Soviet Union Fact sheet.
2. International System Framework.

Cyc's Knowledge-Base Also Supports Disanalogy

HPKB How is a terrorist group's interest in increasing financial assets TQO125b different from a criminal organization's interest in earning profits?

Answer:

1. Each group's interest reflects different goals.
2. A terrorist group's interest in increasing its financial assets, while important, is not its main purpose. Rather, acquiring assets is the means by which the group meets its operational and organizational requirements and achieves its goals. A criminal organization's interest in earning profits, in contrast, is its central goal.

Source(s):

1. Organized Crime in the Former Soviet Union Fact sheet.

Top-Down Knowledge Engineering (KE) in Cyc's Ontology

Knowledge Engineering is a process of Ontologization and Axiomatization

Axioms are associated with concepts (collections or individuals) in microtheories.

Implication Axioms (rules) can be designated as forward- or backward- firing.

Rule-Bound Reasoning

- At the Core of CYC is an Ontology of Concepts (Taxonomy + Relationships) that informs and underpins all axioms in the KB.
- These concept representations do not reflect current thinking in the cognitive psychology of category structure (e.g., radial, fuzzy, prototype-based).

For Example, consider how Cyc combines concepts for Noun-Noun compounds:

```
(#$nnRule "potato gun"
    (#$and (#$genls :NOUN1 #$PartiallyTangible)
        (#$genls :NOUN2 #$ProjectileLauncher)
        (#$not
            (#$genls :NOUN1 #$Organism-Whole)))
    (#$isa :NOUN
        (#$SubcollectionOfWithRelationToTypeFn
                        :NOUN2 #$launchesProjectile :NOUN1))
```


But there are many problems with this account:

Concepts should combine as a matter of definition and meaning; rules are easily defeated and too top-down.

"Authoritative" Hand-Crafting leads to Over-Specification

- Excessive (and obsessive) Ontologization can lead to hair-splitting.
- For example, Cyc discriminates among many different senses of "in" :

E.g.,	in (full submerged)	- like an olive in a martini
	in (partially submerged)	- like a toothpick in the olive
	in (surrounded by)	- like a man in a field
	in (membership)	- like a man in a club

But strangely, not:

$$
\begin{array}{ll}
\text { in (abstract situation) } & \text { - like a woman in love } \\
\text { in (content area) } & \text { - like an academic in a research field }
\end{array}
$$

These copious (and uneven) discriminations yield a combinatorial explosion for NLP parsing systems, yet fail to capture the true essence of "in".

The Excluded Middle

- Cyc supports two Truth values: True and False (no middle ground)
- Cyc supports two Truth modalities:

Default (defeasible) and Monotonic (indefeasible).

- Cyc does not represent facts probabilistically (e.g., 80% likelihood) or fuzzily.

This makes it very difficult to axiomatize typical (but not analytic) truths, such as sandwiches comprise two pieces of bread with meat inside.

```
(#$typicalWRT #$Penguin #$ArcticBird)
(#$atypicalWRT #$Penguin #$Bird)
(#$atypicalWRT #$Insect #$Food)
(#$typicalWRT #$Calzone #$ItalianCuisine)
(#$atypicalWRT #$Calzone #$Pizza)
```

Real common-sense informs us when a situation is atypical, unexpected or surprising. Without typicality, we are left with possibility versus impossibility.

Direct Extraction from Text: Using "Hearst (1992)" Patterns

Singly-Anchored Retrieval Patterns

One "anchor" term can be used to retrieve relations from the WWW

E.g., "Worms, Viruses and other malicious programs"

Problem: These patterns are robust but relatively infrequent in most texts.

Bottom-Up Approaches: Using the "Distributional Profile" of a term

- Noun used as the subject / object of an active verb
(Role Noun Verb)
E.g., a virus infects, a robot obeys, an opera is composed, etc.
- Noun modified by a given adjective
(Attr Noun Adj)
E.g., insults are hurtful, clichés are tired, priests are religious, etc.
- Noun used in a "Group of X" construction
(Group Noun Noun)
E.g., an army of soldiers, a conclave of bishops, a posse of rappers, etc.
- Noun used in a PP-phrase with a given prep. head
(Attach P Noun)
E.g., against an adversary, via an intermediary, along a channel, etc.

Wikipedia as a Distributional Context: "Virus" and "Infect"

On the web: afflatus.ucd.ie (current projects/Lex-Ecologist)

Acquiring Qualia Structures from Textual Patterns on the WWW

Formal (IS-A)	Constitutive (Made-Of)	
$\begin{aligned} & \text { "an } X \text { is a kind of } Y \text { " } \\ & \text { "an } X \text { is } Y \text { " } \\ & \text { "an } X \text { and other" } \\ & \text { "an } X \text { or other" } \\ & \text { " } Y s \text { such as } X s \text { " } \end{aligned}$	"an X is made up of Y s" "an X is made of $Y_{s \text { " }}$ "an X comprises $Y s$ " "an X consists of Y "" "Xs are made up of $Y s$ "	
"Xs and other Ys" "Xs or other Ys" "Ys, especially Xs"	"Xs are made of Ys" "Xs comprise Ys" "Xs consist of Ys"	Cimiano, P. Wenderoth, J. ACL 2007

Telic (Used for)	Agentive (is Made by)
"purpose of an X is"	"to VERB a new x"
"an X is used to"	"to VERB a complete x"
"purpose of Xs is"	"a new X has been Yed"
"Xs are used to"	"complete X has been Yed"

Extracting Qualia: Empirical Results

Cimiano, P. and Wenderoth, J. (2007). Automatic Acquisition of Ranked Qualia Structures from the Web. In Proc. of the $45^{\text {th }}$ Annual Meeting of the ACL, pp 888-895.

Finding Relations Between Terms: Using WWW to "fill in the blanks"

Noun-Compounds (NCs) are a special case of compressed ontological relations

E.g., Nakov, Hearst, Turney, Butnariu and Veale, ...

The WWW can be used as a corpus for finding missing relations between terms

Almuhareb+Poesio (2004): Web-Mining of Concept Modifiers/Attributes

Finds 8934 attributes for 214 nouns
e.g., rocket $=$ [fast, powerful, speed, thrust, ...] vector space of $\mathbf{5 9 , 9 7 9}$ features

Almuhareb+Poesio (2004): Clustering Concepts by Modifiers/Attributes

Class	Concepts	214 concepts from 13 PWN categories
Animal	bear, bull, camel, cat, cow, deer, dog, elephant, horse, kitten, lion, monkey, mouse, oyster, puppy, rat, sheep, tiger, turtle, zebra	
Building	abattoir, center, clubhouse, dormitory, greenhouse, hall, hospital, hotel, house, inn. library, nursery, restaurant, school, skyscraper, tavern, theater, villa, whorehouse	
Cloth	pants, blouse, coat, costume, gloves, hat, jacket, jeans, neckpiece, pajamas, robe, scarf, shirt, suit, trousers, uniform	
Creator	architect, artist, builder, constructor, craftsman, designer, developer, farmer, inventor, maker, manufacture, musician, originator, painter, photographer, producer, tailor	
Disease	acne, anthrax, arthritis, asthma, cancer, cholera, cirrhosis, diabetes, eczema, flu, glaucoma, hepatitis, leukemia, malnutrition, meningitis, plague, rheumatism, smallpox	
Feeling	anger, desire, fear, happiness, joy, love, pain, passion, pleasure, sadness, sensitivity, shame, wonder	
Fruit	apple, banana, berry, cherry, grape, kiwi, lemon, mango, melon, olive, orange, peach, pear, pineapple, strawberry, watermelon	
Furniture	bed, bookcase, cabinet, chair, couch, cradle, desk, dresser, lamp, lounge, seat, sofa, table, wardrobe	
Body Part	ankle, arm, ear, eye, face, finger, foot, hand, head, leg, nose, shoulder, toe, tongue, tooth, wrist	
Publication	atlas, book, booklet, brochure, catalog, cookbook, dictionary, encyclopedia, handbook, journal, magazine, manual, phonebook, reference, textbook, workbook	402 concepts
Family Relation	boy, child, cousin, daughter, father, girl, grandchild, grandfather, grandmother, husband, kid, mother, offspring, sibling, son, wife	from 21 PWN
Time	century, decade, era, evening, fall, hour, month, morning, night, overtime, quarter, season, semester, spring, summer, week, weekend, winter, year	categories
Vehicle	aircraft, airplane, automobile, bicycle, boat, car, cruiser, helicopter, motorcycle, pickup, rocket, ship, truck, van	

Almuhareb \& Poesio (2004): Clustering Results

13-way clustering: [I2=9.58e+001] [214 of 214], Entropy: 0.133, Purity $\mathbf{0 . 8 5 5}$
cid Entpy Purty | body crea dise fami vehi publ feel clot buil time anim frui furn

0	$0.0001 .000 \mid$	0	0	18	0	0	0	0	0	0	0	0	0	0	0.855 for
1	0.0870 .941 \|	0	0	0	0	0	0	0	0	0	0	1	16	0	Almuhareb
2	0.1060 .923 \|	0	1	0	0	0	0	12	0	0	0	0	0	0	\& Poesio
3	$0.0001 .000 \mid$	0	13	0	0	0	0	0	0	0	0	0	0	0	(2004)
4	$0.0001 .000 \mid$	16	0	0	0	0	0	0	0	0	0	0	0	0	(2004)
5	$0.0001 .000 \mid$	0	0	0	0	0	0	0	0	0	17	0	0	0	
6	$0.3210 .750 \mid$	0	1	0	0	12	0	0	2	0	1	0	0	0	using
7	0.1600 .895 \|	0	0	0	0	1	0	0	0	17	0	0	0	1	using
8	0.1000 .929 \|	0	1	0	13	0	0	0	0	0	0	0	0	0	59,979
9	$0.0001 .000 \mid$	0	0	0	0	0	0	0	12	0	0	0	0	0	features
10	0.1550 .864 \|	0	0	0	3	0	0	0	0	0	0	19	0	0	
11	0.4050 .722 \|	0	0	0	0	1	1	1	0	1	1	0	0	13	
12	0.2860 .789 \|	0	1	0	0	0	15	0	2	1	0	0	0	0	

Visualizing Concept Clusters based on Diagnostic Features

Veale \& Hao (2006-08): Web-Mining of Salient Attributes from Similes

e.g., surgeon $=$ [delicate, skilled, precise, clinical, ...]

Stereotypical Frames: Combining Attributes and Values

The Comparison／Simile Construction in other Languages

French	aussi （equally）	dangereux （dangerous）	$\begin{aligned} & \text { qu' } \\ & \text { (as) } \end{aligned}$	un （a）	requin （shark）
Spanish：	\tan （as）	peligrosas （dangerous）	como （as）	un （a）	tiburón （shark）
Romanian	a fel de （equally）	periculos （dangerous）	ca si （as）		Rechin （shark）
Portuguese	tão （so）	perigoso （dangerous）	quanto （as）	um （a）	tubarão （shark）
Italian：	tanto （so much）	pericoloso （dangerous）	quanto （as）	uno （a）	squalo （shark）
Chinese：	象 （like）	鲨鱼 （shark）	一样 （equally）	危险 （dan	

Veale \& Hao (2007) vs. Almuhareb \& Poesio (2004): Clustering Results

13-way clustering: [12=9.58e+001] [214 of 214], Entropy: 0.133, Purity 0.902															$\begin{array}{cc} \bullet & \text { Compare } \\ \ddots & 0.855 \\ & \text { for } \end{array}$
cid Entpy Purty \| body crea dise fami vehi publ feel clot buil time anim frui furn															
0	$0.0001 .000 \mid$	0	0	18	0	0	0	0	0	0	0	0	0	0	
1	0.0870 .941 \|	0	0	0	0	0	0	0	0	0	0	1	16		Almuhareb
2	0.1060 .923 \|	0	1	0	0	0	0	12	0	0	0	0	0	0	0
3	0.0001 .000	0	13	0	0	0	0	0	0	0	0	0	0		o
4	$0.0001 .000 \mid$	16	0	0	0	0	0	0	0	0	0	0	0	0	
5	$0.0001 .000 \mid$	0	0	0	0	0	0	0	0	0	17	0	0	0	Compare
6	$0.3210 .750 \mid$	0	1	0	0	12	0	0	2	0	1	0	0	0	Simile approa
7	0.1600 .895	0	0	0	0	1	0	0	0	17	0	0	0		
8	0.1000 .929 \|	0	1	0	13	0	0	0	0	0	0	0	0		7183 features
	$0.0001 .000 \mid$	0	0	0	0	0	0	0	12	0	0	0	0		Alm.+Po
10	0.1550 .864 \|	0	0	0	3	0	0	0	0	0	0	19	0		Alm.
	0.4050 .722 \|	0	0	0	0	1	1	1	0	1	1	0	0		59,979 features
12	0.2860 .789 \|	0	1	0	0	0	15	0	2	1	0	0	0		

Direct Extraction Redux: Doubly-Anchored Patterns

Two "grounding" terms can be used to reduce retrieval noise (Kozareva, Z., Riloff, E. and Hovy, E. -- ACL 2008)

Useful for populating closed-classes (like Fish, Countries, etc.)

Bootstrapping with Anchored Patterns

The results of one IE cycle can be used to anchor a subsequent cycle (Kozareva, Z., Riloff, E. and Hovy, E. -- ACL 2008)

Bootstrapping can exhaustively seek out full memberships for closed sets

Bootstrapping Fine-Grained Taxonomies: Doubly-Anchored Approach

Acquiring fine-grained categories of the form Adj-Noun
e.g., triples of the form <cola, carbonated, drink> <cheese, soft,food>

Useful for populating closed-classes (like Fish, Countries, etc.)

A Taxonomy as A Pool of Triples: How to obtain the largest Pool?

A Taxonomy as A Pool of Triples: How to obtain the largest Pool?

Two Major Questions:

1. Where do we acquire good seed-bases?
2. How do we minimize cumulative noise from bootstrapping?

Seed \# 1 (of 3): WordNet Glosses

Shallow parse the textual glosses associated with individual WordNet senses

E.g., Espresso "strong black coffee brewed by forcing stream through ..."

Seed \# 2 (of 3) : ConceptNet Propositions (IS-A)

Filter ConceptNet IS-A propositions to obtain only the most plausible ones

Find triples with $\underline{\text { Adj-Noun genus where Wordnet agrees with Noun part }}$

Seed \# 3 (of 3) : Simile-derived Associations

Use the stereotypical features derived from the "as X as a Y " frame earlier:

Comparing our Three Seeds: Size and Coverage

WordNet	
\# triples:	51,314
\# terms:	12,227
\# features:	2,305

.	ConceptNet
\# triples:	1,808
\# terms:	1,133
\# features:	550

Similes	
\# triples:	16,688
\# terms:	6,512
\# features:	1,172

Bootstrapping Results: Growth of Structure over 5 Cycles

Bootstrapping Results: Accumulation of Terms over 5 Cycles

Bootstrapping Results: Increase in Coverage over 5 Cycles

What Next: Learning Slippage Links from Corpus Data

Assume No Zeugma in compressed coordinations: find interchangeable categories

What Next: Categorizing Entities under Fine-Grained Hypernyms

Notice how modifiers cluster into semantic fields, where frequency \approx similarity

Conclusions: Quality Wins Out over Quantity

- Ontologies can be Constructed in a variety of different ways

No one approach is best: adopt an approach based on application needs

- Handcrafted ontologies can be formally complex and knowledge-rich

Ironically, this richness leads to brittleness, as ontologies fail to meet goals

- Language patterns reveal underlying ontological structure of concepts

Mining corpora/WWW-texts for constructions yields intuitive results

- Large ontologies can be bootstrapped from small(-ish) seeds

Quality of resulting ontology depends on quality of seed, not size of seed

