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1.1  Introduction 

This chapter is about computational modelling of the process of musical 
composition, based on a cognitive model of human behaviour. The idea is to try 
to study not only the requirements for a computer system which is capable of 
musical composition, but also to relate it to human behaviour during the same 
process, so that it may, perhaps, work in the same way as a human composer, 
but also so that it may, more likely, help us understand how human composers 
work. Pearce et al. (2002) give a fuller discussion of the motivations behind this 
endeavour. 

We take a purist approach to our modelling: we are aiming, ultimately, at a 
computer system which we can claim to be creative. Therefore, we must 
address in advance the criticism that usually arises in these circumstances: “a 
computer can!t be creative because it can only do what it has explicitly been 
programmed to do”. This argument does not hold, because, with the advent of 
machine learning, it is no longer true that a computer is limited to what its 
programmer explicitly tells it, especially in a relatively unsupervised learning 
task like composition (as compared with the usually-supervised task of learning, 
say, the piano). Thus, a creative system based on machine learning can, in 
principle, be given credit for creative output, much as Wolfgang Amadeus 
Mozart is deemed the creator of the Magic Flute, and not Leopold Mozart, 
Wolfgang!s father, teacher and de facto agent. 

Because music is a very complex phenomenon, we focus on a relatively1 
simple aspect, which is relatively easy to isolate from the many other aspects of 
music: tonal melody. In order to compose music, one normally needs to learn 
about it by hearing it, so we begin with a perceptual model, which has proven 
capable of simulating relevant aspects of human listening behaviour better than 
any other in the literature. We also consider the application of this model to a 
different task, musical phrase segmentation, because doing so adds weight to 
its status as a good, if preliminary, model of human cognition. We then consider 
using this model to generate tonal melodies, and show how one might go about 



 

evaluating the resulting model of composition scientifically. Before we can begin 
this discussion, we will need to cover some background material, and introduce 
some descriptive tools, which are the subject of the next section. 

1.2  Background 

1.2.1  Introduction 

In this section, we explain the basis of our approach to the cognitive modelling 
of musical creativity and supply background material to the various detailed 
sections to follow. We begin by motivating cognitive modelling itself, and then 
argue why doing so is relevant to the study of musical behaviour. We make a 
distinction between different kinds of cognitive model, which serve different 
purposes in the context of research. Next, we outline an approach to modelling 
creative behaviour, within which we frame our discussion. Finally, we briefly 
survey the literature in modelling of music cognition and musical composition, 
and in the evaluation of creative behaviour, to supply background for the later 
presentation. 

1.2.2  Methodology 

Our starting point: Cognitive modelling 

Cognitive science as a research field dates back to the 1950s and !60s. It arises 
from a view of the brain as an information-processing machine, and the mind as 
an epiphenomenon arising in turn from that processing. The aim is to 
understand the operation of the mind and brain at various interconnected levels 
of abstraction, in the expectation that, ultimately, cognitive scientists will be able 
to explain the operation of both mind and brain, from the level of physical 
neurons up to the level of consciousness. There is an important distinction 
between the study of the operation of the mind in general and the resulting 
emergent behaviour of particular minds or groups of minds; the former is our 
focus here. This cognitive focus follows, in the current context, from a view of 
music, not as a Romantic, quasi-Platonic and transcendent entity with an 
absolute definition in the external world, but as a fundamentally social 
phenomenon, driven by and formed from the human urge to communicate. Only 
thus can we account for the multifarious musics of the human world and the way 
they change over time, given the lack of any strong evidence for the existence 
of innate specifically musical abilities shaped directly by evolution (Justus and 
Hutsler, 2005). Necessarily, therefore, we look for the source of music in 
humanity, and also in individual (but not particular) humans, the latter being our 
main interest here. 

The difficulty with studying minds and brains is that they are very difficult to 
measure. The only way one can measure a mind is by recording its effect on 
the world and therefore one can only infer the causes of one!s results. Brains 
are a little more accessible, but ethical issues restricts the extent to which we 



 

can do controlled experiments with them2, and anyway they are so complicated 
that we lack the technology to study them in the detail we really need. To 
overcome these problems, cognitive scientists have tended to focus on 
particular aspects of measurable behaviour, in an abstract way, ignoring 
surrounding detail, in the hope of understanding them in isolation before moving 
on to more inclusive theories. The choice of abstraction is crucial, because, 
done wrongly, it can obscure parts of the phenomenon being studied or blur the 
distinctions between different effects. 

Computational cognitive models 

With the advent of computers, cognitive scientists were able to take their 
models of the mind to new levels of precision. Previously, they were able to 
describe what effects arose from what stimulus, but it was impossible to give a 
mechanistic theory from which predictions could be made, because doing so 
would have been an intractable pen-and-paper exercise, enormously time-
consuming and error-prone. However, with fast computers and access to large, 
high-quality databases of stimuli, it is now possible to embody a cognitive theory 
as a computer program, and thus apply it to large amounts of data, and to test 
its consequences exhaustively—thus, importantly, generating new hypotheses 
for testing against human behaviour from these predictions. In a cyclic way, we 
can then refine our theory to account for incorrect predictions, and try again. In 
addition to goodness of fit to the observed data and behaviours, we prefer 
simpler models over more complex ones, models that selectively predict just the 
observed data, and, finally, models that generate surprising, but true, 
predictions (Cutting et al., 1992, Honing, 2007). 

As well as supplying a way forward, computational modelling gives cognitive 
scientists a new and useful challenge: to define their working abstraction and 
their theory precisely enough that it can be given an operational interpretation 
as a computer program. Much research in computer representation of music is 
also engaged in this challenge (e.g., Marsden, 2000, Wiggins et al., 1993). 

Another issue which is brought into sharp focus is the distinction between 
modelling what a phenomenon does, and modelling how it does it, which have 
been labelled descriptive and explanatory modelling (Wiggins, 2007); Marr 
(1982) and McClamrock (1991) also discuss these and related issues. To 
understand this distinction, an analogy is helpful. Consider models of the 
weather. Such a model could be made by taking a barometer, correlating 
atmospheric pressure with the weather and the wind direction, and writing down 
whether it was raining or not at the time. Given enough data, this simple look-up 
table will probably predict the weather correctly much of the time. However, it 
only computes its predictions in terms of observed correlated connections: it 
encodes nothing of the mechanisms by which the weather operates, and 
therefore cannot explain how the weather works; nor can it account for 
conditions it has not met before, unless by some naïve generalisation such as 
interpolation. If it is indeed reasonably accurate, the model can nevertheless be 



 

useful predictor of the weather, and so we might say it describes the weather to 
some degree. Now imagine a different super-computer-based weather model, 
which has detailed information about the same empirical data, but which also 
encodes knowledge of physics (for example, of the process whereby liquid 
water will precipitate from humid air as temperature drops). This physical model 
need only be in terms of mathematical equations such as Boyle!s Law, and not, 
for example, in terms of the movement of individual molecules of gas, but it 
nevertheless captures a different kind of detail from the descriptive one above—
and we can ask it “why?”. So this explanatory model gives an account of the 
weather by saying (at another level of abstraction) how the effects described by 
both models actually arise. Like the descriptive model, we can test it by giving it 
conditions that we have newly experienced for the first time, and checking its 
predictions against reality, and if they turn out to be wrong, one source of 
potential error is now the mechanism itself. 

A final useful concept here will be that of the meta-model, named from the 
Greek µ!"#, meaning after or beyond, as in “metaphysics”. We use this to refer 

to the use of a model, intended for and validated with respect to a particular 
(cognitive) phenomenon, (directly or indirectly) to predict the behaviour of 
another related but different phenomenon for which it was neither intended nor 
designed. It is useful to make this distinction because this capacity adds 
considerable weight to the argument that the model is in some sense a good 
model in general terms (Honing, 2007), and can also support a case that it is an 
explanatory one. We give an example of such a model and a meta-model 
derived from it below. 

Computational cognitive modelling of creative behaviour 

Since the point of this chapter is to consider creative applications of cognitive 
models, we need a framework within which to do so. Boden (1990) proposes a 
model of creative behaviour which revolves around the notion of a conceptual 

space and its exploration by creative agents. The conceptual space is a set of 
concepts which are deemed to be acceptable as examples of whatever is being 
created. Implicitly, the conceptual space may include partially defined concepts 
too. Exploratory creativity is the process of exploring a given conceptual space; 
transformational creativity is the process of changing the rules which delimit the 
conceptual space. Boden (1998) also makes an important distinction between 
mere membership of a conceptual space and the value of a member of the 
space, which is extrinsically defined, but not precisely. Various other models of 
creativity exist (e.g., Koestler, 1964, Wallas, 1926), but are not sufficiently 
detailed for implementation; Ritchie (2007) gives an alternative view of ways to 
study creative systems, but it does not suit our purposes here. 

Boden!s model, however, is amenable to implementation. Wiggins (2006a,b) 
provides one possible formalisation, presenting a Creative Systems Framework 
(CSF) which may be directly constructed, or used to identify aspects of creative 
systems and compare them with each other and with human behaviour. There 



 

is not space to present the full framework here; it suffices to echo Boden!s idea 
of a conceptual space, defined by a mutable rule set, R, and a further mutable 
set of rules, E, according to which the quality of the items created can be 
evaluated. This dichotomy is important—for example, it is possible to recognise 
a joke without thinking it to be a good one—and so it is necessary to separate 
these things. An explicit component of Wiggins! formalism which is only implicit 
in Boden!s original thought experiment is the idea of a traversal strategy, T, 
which is used by a creative agent to explore the conceptual space—in other 
words, while it is actually doing the creative stuff. This is necessary for a 
computer system (otherwise nothing will happen!), but also for an explicit model 
of a specific creative agent: the difference, for example, between a first year 
music student and an experienced professional organist harmonising a chorale 
melody lies not just in the quality of the output produced, but also in the 
encoding of the strategies used: the unexceptional student is likely to use trial 
and error to some extent, whereas the organist can intuitively “see” the right 
harmonisation. 

Throughout the rest of this chapter, we use all three of the concepts behind 
the abstract rule sets outlined above, referring to them as R, T, and E, to 
identify as precisely as we can which aspect of a creative system we are 
discussing. 

1.2.3  “Non-cognitive” musical composition systems 

For completeness, we must acknowledge the existence of a substantial body of 
work in autonomous systems for musical composition which is not directly 
related to music cognition and therefore not directly related to this chapter. The 
earliest such system of which we are aware is that of Hiller and Isaacson 
(1959), where a stochastic model was used to generate a musical score, which 
was subsequently performed by human musicians. Since the 1950s, various 
attempts have been made at creating music, without explicit reference to the 
processes humans use in doing so. In many of these attempts, the emphasis is 
on reproducing the style of existing (or formerly existing) composers. In context 
of the CSF (see above), the focus is then primarily on R and E; T is usually 
treated mainly as an implementation detail, without regard to simulation of 
human behaviour. A particularly good example of this approach is CHORAL 
(Ebcio"lu, 1988), a rule-based expert system implemented in a specially-written 
Backtracking Specification Language (BSL) and used for the harmonisation of 
chorale melodies in the style of J. S. Bach. Here, R and E are intertwined in the 
code of the program and it is not clear how to decide which is which (though 
there is an excellent specification of several hundred Bach-harmonic rules in 
Ebcio"lu!s thesis, which may well be a good approximation to R); T is entirely 
implicit, and is obscured to most readers because it is encoded in Ebcio"lu!s 
backtracking strategy. 

Other systems make more of an explicit attempt to model evaluation on the 
basis of musical attributes perceived by a hypothetical listener. For example, 



 

Robertson et al. (1998) present HERMAN, a system which is capable of 
generating continuous music, whose emotional property can be varied from 
neutral to “scary”. Rutherford and Wiggins (2002) demonstrate empirically that 
human responses do to an extent match the intention of the program!s operator. 
The focus here was again on R and E, though the difference between them was 
made more explicit by the use of specific heuristics; T was again relegated to a 
matter of implementation. 

It is important to understand that both CHORAL and HERMAN, and many 
other systems like them, rely on music theory for the basis of their operation, 
and, as such, encode those aspects of music cognition which are implicit in 
music theory (which, we suggest, are many). However, it is difficult to argue that 
such knowledge-based systems actually model human creative behaviour, 
because they are programmed entities, and merely do what their programmers 
have made them do: in the terms outlined above, they are descriptive, and not 
explanatory, models. We suggest that, for an autonomous composition system 
to be considered genuinely “creative”, it is necessary (though not sufficient) that 
the system include a significant element of autonomous learning. Then, while 
the urge to create may well be instilled by a programmer, the products of 
creativity are not. 

No review of this field would be complete without mention of the work of 
David Cope (2005). Cope!s Experiments in Musical Intelligence program has 
long standing in computer music research as the standard of stylistic re-
composition. Regrettably, however, the publications do not tell us how it works, 
and therefore it is impossible to discuss its behaviour in detail. 

1.2.4  Non-computational models of music cognition 

There is a long history of efforts to develop models of listening-related music 
cognition that are both formal (although not specifically computational) and 
general. From the point of view of the CSF, we view all these theories as 
contributing primarily to R, in a hypothetical creative system, though E is 
presumably affected too, since these theories are not about creating music, but 
listening to it. 

Perhaps the earliest attempt was that of Simon and Sumner (1968), who 
assume that music cognition involves pattern induction and attempt to define a 
formal language for describing the patterns perceived and used by humans in 
processing musical sequences. They begin with the notion of an alphabet, an 
ordered set of symbols, for representing the range of possible values for a 
particular musical dimension (e.g., melody, harmony, rhythm and form, using 
alphabets for diatonic notes, triads, duration, stress and formal structure). 
Simon and Sumner define three kinds of operation. First, subset operations may 
be defined to derive more abstract alphabets from existing ones. Second, 
sequences of symbols may be described by patterns of operations that relate a 
symbol to its predecessor (e.g., same or next). Finally, a pattern of operations 
may be replaced by an abstract symbol. According to this model, when we 



 

listen to music, we first induce an alphabet, initial symbol and pattern consistent 
with what we hear and then use that pattern to extrapolate the sequence. 

Deutsch and Feroe (1981) extend the pattern language of Simon and 
Sumner and flesh out its formal specification. They use it to define various 
common collections of notes (such as scales, triads and chords) through the 
recursive application of different operators to an alphabet based on the 
chromatic scale. Arguing that patterns are learnt through long-term exposure to 
a particular music style, they motivate their approach by appealing to parsimony 
of encoding (reduced representational redundancy) and constraints on memory 
and processing (through chunking). However, experiments have yielded mixed 
support for the predictions of the model (Boltz and Jones, 1986, Deutsch, 
1980). 

The Generative Theory of Tonal Music (GTTM) of Lerdahl and Jackendoff is 
probably the best-known effort to develop a comprehensive method for the 
structural description of tonal music. Inspired by the use of Chomskian 
grammars to describe language, the theory is intended to yield a hierarchical, 
structural description of any piece of Western tonal music, corresponding to the 
final cognitive state of an experienced listener to that composition. 

According to GTTM, a listener unconsciously infers four types of hierarchical 
structure in a musical surface: grouping structure, the segmentation of the 
musical surface into units (e.g., motives, phrases); metrical structure, the 
pattern of periodically recurring strong and weak beats; time-span reduction, the 
relative structural importance of pitch events within contextually established 
rhythmic units; and prolongational reduction, patterns of tension and relaxation 
amongst pitch events at various levels of structure. According to the theory, 
grouping and metrical structure are largely derived directly from the musical 
surface and these structures are used in generating a time-span reduction 
which is, in turn, used in generating a prolongational reduction. Each of the four 
domains of organisation is subject to well-formedness rules that specify which 
hierarchical structures are permissible and which themselves may be modified 
in limited ways by transformational rules. While these rules are abstract in that 
they define only formal possibilities, preference rules select which well-formed 
or transformed structures actually apply to particular aspects of the musical 
surface. Time-span and prolongational reduction additionally depend on tonal-
harmonic stability conditions which are internal schemata induced from 
previously heard musical surfaces. 

When individual preference rules reinforce one another, the analysis is stable 
and the passage is regarded as stereotypical whilst conflicting preference rules 
lead to an unstable analysis causing the passage to be perceived as ambiguous 
and vague. Thus, according to GTTM, the listener unconsciously attempts to 
arrive at the most stable overall structural description of the musical surface. 
Experimental studies of human listeners have found support for some of the 
preliminary components of the theory including the grouping structure (Deliège, 
1987) and the metrical structure (Palmer and Krumhansl, 1990). 



 

Narmour presents the Implication-Realisation (IR) theory of music cognition 
which, like GTTM, is intended to be general (although the initial presentation 
was restricted to melody) but which, in contrast to GTTMs static approach, 
starts with the dynamic processes involved in perceiving music in time. The 
theory posits two distinct perceptual systems: the bottom-up system is held to 
be hard-wired, innate and universal while the top-down system is held to be 
learnt through musical experience. The two-systems may conflict and, in any 
given situation, one may over-ride the implications generated by the other. 

In the bottom-up system, sequences of melodic intervals vary in the degree 
of closure that they convey. Strong closure signifies the termination of ongoing 
melodic structure; an interval which is unclosed is said to be an implicative 

interval and generates expectations for the following interval, termed the 
realised interval. The expectations generated by implicative intervals for 
realised intervals are described by Narmour in terms of several principles of 
continuation which are influenced by the Gestalt principles of proximity, 
similarity, and good continuation. The IR model also specifies how the basic 
melodic structures combine together to form longer and more complex structural 
patterns of melodic implication within the IR theory. In particular, structures 
associated with weak closure may be chained to subsequent structures. In 
addition, structural tones (those beginning or ending a melodic structure, 
combination or chain) which are emphasised by strong closure at one level are 
said to transform to the higher level. 

The IR theory has inspired many quantitative implementations of its 
principles and a large body of experimental research testing its predictions as a 
theory of melodic expectation (Cuddy and Lunny, 1995, Krumhansl, 1995a, 
1995b, Krumhansl et al., 2000, Schellenberg, 1996, 1997, Thompson et al., 
1997), which we may interpret as supportive. Our experiments seem to add 
further support, but with the proviso that our system is (in Narmour!s terms) top-
down only (Pearce and Wiggins, 2006). 

1.2.5  Computational models of music cognition 

Given that we wish to base our autonomous creative system on behaviour that 
is learnt, rather than programmed, we need to identify a starting point, from 
which the learnt behaviour can arise. In humans, this starting point seems to be 
the ability to hear music and perceive its internal structure; it is hard to imagine 
how musically creative behaviour could arise otherwise, unless it is an intrinsic 
property of human brains. There is no evidence for this latter claim, but there is 
evidence that music is learnt: without learning, it is very hard to account for the 
ubiquity of music in human society while still explaining the variety of musics in 
different cultures and sub-cultures. Various authors (e.g., Bown and Wiggins, 
2008, Cross, 2007, Justus and Hutsler, 2005, Mithen, 2006) have studied these 
questions; the consensus seems to be that music cognition and music creation 
co-evolve—and, indeed, we arguably see the cultural aspects of this process 
continuing in the present day, and not only in (pre)history. 



 

There are not very many computational models of music cognition in the 
literature, and those that do exist span a wide range of musical dimensions—
music cognition is too complicated a phenomenon to be modelled directly all in 
one go. Aspects of the general frameworks described above have been 
implemented piecemeal. The approach usually taken is the standard scientific 
reductionist approach: attempt to understand each aspect of the problem while 
holding the others fixed, then try to understand their interactions, and only 
subsequently to put all the understanding together. Again a general distinction 
can be made between programmed-rule-based and machine learning 
approaches. It is worth mentioning that this distinction is independent of the 
structural divisions of the CSF: each of the three rule sets, R, T and E, may be 
either human-programmed or learned, so long as there is a context in which 
they can interact. However, there is a difference in relation to the 
descriptive/exploratory distinction: a pre-programmed rule-based system (of 
which our simple weather-predictor, above, was an extreme example), is less 
likely to be an explanatory model than a descriptive one, because, by definition, 
it does not give any account of how the rules arise in context of their eventual 
usage. 

On the machine learning side, Jamshed Bharucha developed a connectionist 
model of harmony based on a sequential feed-forward neural network. The 
model accurately predicts a range of experimental findings including memory 
confusions for target chords following a context chord (Bharucha, 1987) and 
facilitation in priming studies (Bharucha and Stoeckig, 1986, 1987). In addition, 
the network model learned the regularities of typical Western chord 
progressions through exposure and the representation of chord proximity in the 
circle of fifths arose as an emergent property of the interaction of the network 
with its environment. Large et al. (1995) examined the ability of another neural 
network architecture, RAAM (Pollack, 1990), to acquire reduced representations 
of Western children!s melodies represented as tree structures according to 
music-theoretic predictions (Lerdahl and Jackendoff, 1983). The trained models 
acquired compressed representations of the melodies in which structurally 
salient events are represented more efficiently (and reproduced more 
accurately) than other events. Furthermore, the certainty with which the trained 
network reconstructed events correlated well with cognitive representations of 
structural importance as assessed by empirical data on the events retained by 
trained pianists across improvised variations on the melodies. 

Perhaps the most complete computational theory to date is that of Temperley 
(2001), which is inspired to an extent by GTTM. Temperley proposed 
preference rule models of a range of fundamental processes in music cognition 
which include metre recognition, melodic segmentation, voice separation in 
polyphonic music, pitch spelling, chord analysis, and key identification. The rule 
models reflect sophisticated knowledge from music theory and are implemented 
in a suite of analysis tools named Melisma whose source code is publicly 
available. When applied to real-world analysis problems the Melisma tools 



 

generally exhibit reasonable performance (see below regarding melodic 
segmentation or Meredith, 2006, regarding pitch spelling) and in some areas 
have become a standard for rule-based music analysis algorithms. Most of the 
algorithmic models bear little underlying conceptual coherence and make strong 
use of domain-specific knowledge as reflected by the respective rules and their 
combination. Temperley (2007) aims at a reformulation of some of these rule-
based models in the general probabilistic framework of Bayesian statistics. He 
derives a so-called pitch and a rhythm model based on frequency counts in 
different music corpora and applies them to several musical processes such as 
metre-determination, key-finding and melodic error detection.  

As the Bayesian models do not always outperform the rule-based algorithms, 
the value of the Bayesian reformulation seems to lie rather in the more coherent 
underlying theory, although a more comprehensive and rigorous evaluation is 
still required (Pearce et al., 2007). 

1.2.6  Computational cognitive models of musical composition 

By comparison with cognitive-scientific research on musical listening, cognitive 
processes in composition remain largely unexamined (Baroni, 1999, Sloboda, 
1985). This section reviews research on the cognitive modelling of music 
composition with an emphasis on computational approaches; Deliège and 
Wiggins (2006) present a range of work in the non-computational context. 

Johnson-Laird (1991) argues that it is fundamental to understand what the 
mind has to compute in order to generate an acceptable jazz improvisation 
before examining the precise nature of the algorithms by which it does so.3  To 
study the intrinsic constraints of the task, Johnson-Laird applied grammars of 
different expressive powers to different subcomponents of the problem. His 
results suggest that, while a finite state grammar is capable of computing the 
melodic contour, onset and duration of the next note in a jazz improvisation, its 
pitch must be determined by constraints derived from a model of harmonic 
movement which requires a context free grammar. 

Lerdahl (1988) explores the relationship between listening and composition 
and outlines some cognitive constraints that it places on the cognitive 
processes of composition. He frames his arguments within a context in which a 
compositional grammar generates both a structural description of a composition 
and, together with intuitive perceptual constraints, its realisation as a concrete 
sequence of discrete events which is consumed by a listening grammar that, in 
turn, yields a structural description of the composition as perceived. A further 
distinction is made between natural and artificial compositional grammars: the 
former arise spontaneously within a culture and are based on the listening 
grammar; the latter are consciously developed by individuals or groups and may 
be influenced by any number of concerns. Noting that the two kinds of grammar 
coexist fruitfully in most complex and mature musical cultures, Lerdahl argues 
that when the artificial influences of a compositional grammar carry it too far 
from the listening grammar, the intended structural organisation can bear little 



 

relation to the perceived structural organisation of a composition. He goes on to 
outline some constraints, largely based on the preference rules and stability 
conditions of GTTM, placed on compositional grammars by this need to recover 
the intended structural organisation from the musical surface by the listening 
grammar. 

Temperley (2003) expands the proposal that composition is constrained by a 
mutual understanding between composers and listeners of the relationships 
between structural descriptions and the musical surface into a theory of 
communicative pressure on the development of musical styles. Various 
phenomena are discussed, including the relationship between the traditional 
rules of voice leading and principles of auditory perception (Huron, 2001) and 
trade-off between syncopation and rubato in a range of musical styles. 

Baroni (1999) discusses grammars for modelling the cognitive processes 
involved in musical listening and composition, basing his arguments on his own 
grammars for the structural analysis of a number of musical repertoires (Baroni 
et al., 1992). He characterises a listening grammar as a collection of 
morphological categories which define sets of discrete musical structures at 
varying levels of description and a collection of syntactical rules for combining 
morphological units. He argues that such a grammar is based on a stylistic 
mental prototype acquired through extensive exposure to a given musical style. 
While the listening grammar is largely implicit, according to Baroni, the complex 
nature of composition requires the acquisition of explicit grammatical knowledge 
through systematic, analytic study of the repertoire. However, he states that the 
compositional and listening grammars share the same fundamental morphology 
and syntax. The distinguishing characteristics of the two cognitive activities lie in 
the technical procedures underlying the effective application of the syntactical 
rules. As an example, he examines hierarchical structure in the listening and 
compositional grammars: for the former, the problem lies in picking up cues for 
the application of grammatical rules and anticipating their subsequent 
confirmation or violation in a sequential manner; for the latter, the structural 
description of a composition may be generated top-down. 

Perhaps surprisingly, given that we are now considering composition, in 
terms of the CSF, the emphasis is, again, on R and maybe E: the method of 
traversal, T, being treated almost as a given. 

Turning now to machine-learning approaches, Conklin (2003) examines four 
methods of generating high-probability music according to a statistical model. 
The simplest is sequential random sampling: an event is sampled from the 
estimated event distribution at each sequential position up to a given length. 
Events are generated in a random walk, so there is a danger of straying into 
local minima in the space of possible compositions. Even so, most statistical 
generation of music uses this method. 

The Hidden Markov Model (HMM) addresses these problems; it generates 
observed events from hidden states (Rabiner, 1989). An HMM is trained by 
adjusting the probabilities conditioning the initial hidden state, the transitions 



 

between hidden states and the emission of observed events from hidden states, 
so as to maximise the probability of a training set of observed sequences. A 
trained HMM can be used to estimate the probability of an observed sequence 
of events and to find the most probable sequence of hidden states given an 
observed sequence of events. This can be achieved efficiently for a first-order 
HMM using the Viterbi algorithm; a similar algorithm exists for first-order 
(visible) Markov models. However, Viterbi!s running time increases  
exponentially in the context length of the underlying Markov model (Conklin, 
2003), which means that it is not good for practical use. However, there do exist 
tractable methods for sampling from complex statistical models (such as those 
presented here) which address the limitations of random sampling (Conklin, 
2003). We return to this below. 

Notwithstanding the problems of complexity, Conklin makes a real attempt to 
address the question of what a traversal strategy, T, might be, as well as 
considering R carefully. In our work, we follow his statistical approach, but note 
that something more semantically sensitive will be appropriate in future work. 

1.2.7  Evaluation of creative behaviour 

The evaluation of creative behaviour, either within a creative system, or from 
outside it, is very difficult because of the subjectivity involved, and because 
individual outputs cannot necessarily be said to be representative of the 
system!s capability. 

On the computational side, analysis by synthesis has been used to evaluate 
computational models of composition by generating pieces and evaluating them 
with respect to the objectives of the implemented model. The method has a long 
history; Ames and Domino (1992) argue that a primary advantage of 
computational analysis of musical style is the ability to evaluate new pieces 
generated from an implemented theory. However, evaluation of the generated 
music raises methodological issues which have typically compromised the 
potential benefits thus afforded (Pearce et al., 2002). Often, compositions are 
evaluated with a single subjective comment, e.g., : “[the compositions] are 
realistic enough that an unknowing listener cannot discern their artificial origin” ( 
Ames and Domino, 1992, pp. 186). This lack of precision makes it hard to 
compare theories intersubjectively. 

Other research has used expert stylistic analyses to evaluate computer 
compositions. This is possible when a computational model is developed to 
account for some reasonably well-defined stylistic competence or according to 
criteria derived from music theory or music psychology. For example, Ponsford 
et al. (1999) gave an informal stylistic appraisal of the harmonic progressions 
generated by their n-gram models. 

However, even when stylistic analyses are undertaken by groups of experts, 
the results obtained are typically still qualitative. For fully intersubjective 
analysis by synthesis, the evaluation of the generated compositions must be 



 

empirical. One could use an adaptation of the Turing test, where subjects are 
presented with pairs of compositions (one computer-generated, the other 
human-composed) and asked which they believe to be the computer-generated 
one (Marsden, 2000). Musical Turing tests yield empirical, quantitative results 
which may be appraised intersubjectively and have demonstrated the inability of 
subjects to distinguish reliably between computer- and human-composed 
music. But the method suffers from three major difficulties: it can be biased by 
preconceptions about computer music, allows ill-informed judgements, and fails 
to examine the criteria being used to judge the compositions. 

Assessing human creativity is no easier, but at least one technique has been 
proposed that seems promising. Amabile (1996) proposes a conceptual 
definition of creativity in terms of processes resulting in novel, appropriate 
solutions to heuristic, open-ended or ill-defined tasks. However, while agreeing 
that creativity can only be assessed through subjective assessments of 
products, she criticises the use of a priori theoretical definitions of creativity in 
rating schemes and failure to distinguish creativity from other constructs. While 
a conceptual definition is important for guiding empirical research, a clear 
operational definition is necessary for the development of useful empirical 
methods of assessment. Accordingly, she presents a consensual definition of 
creativity in which a product is deemed creative to the extent that observers who 
are familiar with the relevant domain independently agree that it is creative. To 
the extent that this construct is internally consistent (independent judges agree 
in their ratings of creativity), one can empirically examine the objective or 
subjective features of creative products which contribute to their perceived 
creativity. 

Amabile used this operational definition to develop the consensual 

assessment technique (CAT), an empirical method for evaluating creativity. Its 
requirements are that the task be open-ended enough to permit considerable 
flexibility and novelty in the response, which must be an observable product 
which can be rated by judges. Regarding the procedure, the judges must:  

 

1. be experienced in the relevant domain;  

2. make independent assessments;  

3. assess other aspects of the products such as technical accomplishment, 
aesthetic appeal or originality;  

4. make relative judgements of each product in relation to the rest of the 
stimuli;  

5. be presented with stimuli and provide ratings in orders randomised 
differently for each judge.  

Most importantly, in analysing the collected data, the inter-judge reliability of the 
subjective rating scales must be determined. If—and only if—reliability is high, 
we may correlate creativity ratings with other objective or subjective features of 
creative products. 



 

Numerous studies of verbal, artistic and problem solving creativity have 
demonstrated the ability of the CAT to obtain reliable subjective assessments of 
creativity in a range of domains (Amabile, 1996, ch. 3, gives a review). 

The CAT overcomes the limitations of the Turing test in evaluating 
computational models of musical composition. First, it requires the use of 
human judges expert in the task domain. Second, since it has been developed 
for research on human creativity, no mention is made of the computational 
origins of the stimuli; this avoids bias due to preconceptions. Third, and most 
importantly, the methodology allows more detailed examination of the objective 
and subjective dimensions of the creative products. Crucially, the objective 
attributes of the products may include features of the generative models 
(corresponding with cognitive or stylistic hypotheses) which produced them. 
Thus, we can empirically compare different musicological theories of a given 
style or hypotheses about the cognitive processes involved in composing in that 
style. 

We propose to use the CAT in evaluating creative computer systems as well 
as human ones. 

1.3  Towards a computational model of music cognition 

1.3.1  Introduction 

Having laid out the background of our approach, and supplied a context of 
extant research, we now present our model of melody cognition (the Information 

Dynamics Of Music or IDyOM model). We describe it in three parts: first, the 
computational model itself; second, its application to melodic pitch expectation; 
and third, the extension of the same model to melodic grouping (which we then 
call a meta-model of music cognition). As with the other cognitive models 
described above, we will view the expectation model as supplying R, and 
perhaps some of E, in our creative system. For want of literature on the subject, 
we begin with a naïve statistical T. 

The following is a brief summary; detailed presentations of the model are 
available elsewhere (Pearce, 2005, Pearce et al., 2005, Pearce and Wiggins, 
2004). 

1.3.2  The Computational Model 

The representation scheme 

 We use a multiple viewpoint system (Conklin and Witten, 1995) as the basis of 
our representation scheme. The scheme takes as its musical surface 
(Jackendoff, 1987) sequences of note events, representing the instantiation of a 
finite number of discrete features or attributes. An event consists of a number of 
basic features representing its onset time, duration, pitch and so on. Basic 
features are associated with an alphabet: a finite set of symbols determining the 



 

possible instantiations of that feature in a concrete note. 

The representation scheme also allows for the construction of derived 

features which can be computed from the values of one or more basic features 
(e.g., inter-onset interval, pitch interval, contour, and scale degree). In some 
locations in a melody, a given derived feature may be undefined. Furthermore, it 
is possible to define derived features that represent attributes of non-adjacent 
notes and compound features may be defined to represent interactions between 
primitive features. 

To ensure that our results pertain to real-world musical phenomena, and to 
ensure ecological validity, we use music data from existing repertoires of music. 
Here, we use data derived from scores but the representation scheme is rather 
flexible and could be extended to represent expressive aspects of music 
performance (e.g., dynamics, expressive timing). Although we focus on melody, 
and not all musics have an equivalent analogue of the Western notion, stream 
segregation (Bregman, 1990) appears to be a basic perceptual process. 
Furthermore, the multiple viewpoints framework has been extended to 
accommodate the representation of homophonic and polyphonic music 
(Conklin, 2002). 

The modelling strategy 

 IDyOM itself is based on n-gram models commonly used in statistical language 
modelling (Manning and Schütze, 1999). An n-gram is a sequence of n symbols 
and an n-gram model is simply a collection of such sequences each of which is 
associated with a frequency count. During the training of the statistical model, 
these counts are acquired through an analysis of some corpus of sequences 
(the training set) in the target domain. When the trained model is exposed to a 
sequence drawn from the target domain, it uses the frequency counts 
associated with n-grams to estimate a probability distribution governing the 
identity of the next symbol in the sequence given the n!1 preceding symbols. 

The quantity n!1 is known as the order of the model and represents the number 

of symbols making up the context within which a prediction is made. 

The modelling process begins by choosing a set of basic features that we are 
interested in predicting. As these basic features are treated as independent 
attributes, their probabilities are computed separately and in turn, and the 
probability of a note is simply the product of the probabilities of its attributes. 
Here we consider the example of predicting pitch alone. 

The most elementary n-gram model of melodic pitch structure (a monogram 
model where n=1) simply tabulates the frequency of occurrence for each 
chromatic pitch encountered in a traversal of each melody in the training set. 
During prediction, the expectations of the model are governed by a zeroth-order 
pitch distribution derived from the frequency counts and do not depend on the 
preceding context of the melody. In a digram model (where n=2), however, 
frequency counts are maintained for sequences of two pitch symbols and 
predictions are governed by a first-order pitch distribution derived from the 



 

frequency counts associated with only those digrams whose initial pitch symbol 
matches the final pitch symbol in the melodic context. 

Fixed order models such as these suffer from a number of problems. Low-
order models (such as the monogram model discussed above) clearly fail to 
provide an adequate account of the structural influence of the context on 
expectations. However, increasing the order can prevent the model from 
capturing much of the statistical regularity present in the training set. An 
extreme case occurs when the model encounters an n-gram that does not 
appear in the training set in which case it returns an estimated probability of 
zero. In order to address these problems, the IDyOM model maintains 
frequency counts during training for n-grams of all possible values of n in any 
given context. During prediction, distributions are estimated using a weighted 
sum of all models below a variable order bound. This bound is determined in 
each predictive context using simple heuristics designed to minimise 
uncertainty. The combination is designed such that higher-order predictions 
(which are more specific to the context) receive greater weighting than lower-
order predictions (which are more general). In a given melodic context, 
therefore, the predictions of the model may reflect the influence of both the 
digram model and (to a lesser extent) the monogram model discussed above. 
Furthermore, in addition to the general, low-order statistical regularities captured 
by these two models, the predictions of the IDyOM model can also reflect 
higher-order regularities which are even more specific to the current melodic 
context (to the extent that these exist in the training set). 

Inference over multiple features: 

 One final issue to be covered regards the manner in which IDyOM exploits the 
representation of multiple features of the musical surface described above. The 
modelling process begins with the selection, by hand, of a set of features of 
interest and the training of distinct n-gram models for each of these features. 
For each note in a melody, each feature is predicted using two models: first, the 
long-term model that was trained over the entire training set in the previous 
step; and second, a short-term model that is trained incrementally for each 
individual melody being predicted. Figure 1.1 illustrates this (and other aspects 
of the model of pitch expectation and the meta-model of melodic segmentation, 
to which we return below). 

 



 

 

Figure 1.1:  Our development of Pearce!s (2005) cognitive model. The central 
distribution gives the model of pitch expectation; the entropy and information 

content outputs, coupled with some peak-picking, constitute the meta-model of 
melodic segmentation. 

The task of combining the predictions from all these models is achieved in two 
stages both of which use a weighted multiplicative combination scheme in 
which greater weights are assigned to models whose predictions are associated 
with lower entropy (or uncertainty) at that point in the melody. In this scheme, a 
combined distribution is achieved by taking the product of the weighted 
probability estimates returned by each model for each possible value of the 
pitch of the next note and then normalising such that the combined estimates 
sum to unity over the pitch alphabet. The entropy-based weighting method and 
the use of a multiplicative as opposed to a additive combination scheme both 
improve the performance of the model in predicting the pitches of unseen 
melodies (Pearce et al., 2005, Pearce and Wiggins, 2004). 

In the first stage of model combination, the predictions of models for different 
features are combined for the long-term and short-term models separately. 
Distributions from models of derived features are first converted into 
distributions over the alphabet of the basic feature from which they are derived 
(e.g., in order to combine a distribution over pitch contours with one over scale 
degrees, first we need to convert both into distributions over chromatic pitch). If 
any feature (derived or otherwise) is undefined at a given location in a melody, a 
model of that feature will not contribute to the predictions of the overall system 
at that location. In the second stage, the two combined distributions (long-term 
and short-term) resulting from the first step are combined into a single 
distribution which represents the overall system!s final expectations regarding 
the pitch of the next note in the melody. The use of long- and short-term models 
is intended to reflect the influences on expectation of both existing extra-opus 
and incrementally increasing intra-opus knowledge while the use of multiple 
features is intended to reflect the influence of regularities in many dimensions of 
the musical surface.  



 

1.3.3  Modelling melodic pitch expectancy 

The conditional probabilities output by IDyOM in a given melodic context may 
be interpreted as contextual expectations about the nature of the forthcoming 
note. Pearce and Wiggins (2006) compare the melodic pitch expectations of the 
model with those of listeners in the context of single intervals (Cuddy and 
Lunny, 1995), at particular points in British folk songs (Schellenberg, 1996) and 
throughout two chorale melodies (Manzara et al., 1992). The results 
demonstrate that the statistical system predicts the expectations of listeners as 
least as well as the two-factor model of Schellenberg (1997) and significantly 
better in the case of more complex melodic contexts. 

1.3.4  Modelling melodic segmentation 

Musical segmentation is a fundamental process in music-cognitive theory and 
simulation (e.g., Cambouropoulos, 1996, Lerdahl and Jackendoff, 1983, Potter 
et al., 2007, Wiggins, 2007). In this section, we show how our model of pitch 
expectation can be used to predict human judgements of melodic segment 
boundaries. Inevitably, this meta-model (see section 1.2.2) is not superior to all 
existing segmentation models from the literature because it includes no direct 
encoding of the musical features that we know determine segmentation: 
metrical structure, harmony, and so on. However, it performs surprisingly well, 
in comparison with other descriptive, programmed models. Our model can 
predict both large-scale and small-scale boundaries in music. 

From a musicological perspective, it has been proposed that perceptual 
groups are associated with points of closure where the ongoing cognitive 
process of expectation is disrupted either because the context fails to stimulate 
strong expectations for any particular continuation or because the actual 
continuation is unexpected (Meyer, 1957, Narmour, 1990). In addition, empirical 
psychological research has demonstrated that infants and adults use the 
implicitly learnt statistical properties of pitch (Saffran et al., 1990), pitch interval 
(Saffran and Griepentrog, 2001) and scale degree (Saffran, 2003) sequences to 
identify segment boundaries on the basis of higher digram (n=2) transition 
probabilities within than between groups. Finally, in machine learning and 
computational linguistics, algorithms based on the idea of segmenting before 
unexpected events perform reasonably well in identifying word boundaries in 
infant-directed speech (Brent, 1999, Cohen et al., 2007, Elman, 1990). There is 
some evidence that high predictive uncertainty is also associated with word 
boundaries (Cohen et al., 2007). 

Drawing on this background, we achieve our meta-model by applying 
information-theoretic principles (Shannon, 1948) to the distributions produced 
by the statistical model of melodic expectation. In particular, we represent 
unexpectedness of a note by its information content (the negative log of its 
conditional probability); and we represent uncertainty about the identity of the 
next note by the entropy (the average information content) of the distribution 



 

governing the note!s identity computed from both the STM and LTM. Our 
prediction of large-scale structure works by looking for relatively large, 
simultaneous, positive change-points in the entropy and information content of 
the music at each note, as it proceeds (Potter et al., 2007), essentially 
implementing Narmour!s (1990) proposal. Entropy measures uncertainty, so a 
downward trend followed by a sudden increase corresponds with closure at the 
end of a phrase and then the relative uncertainty generated by not knowing 
what comes next. Unexpectness measures something related (though of course 
the beginning of each new phrase need not necessarily be very unexpected in 
absolute terms!). 

Here we focus on the effects of unexpectedness (modelled by information 
content) on low-level melodic segmentation, leaving the role of entropy for 
future research. Using a model of both pitch and rhythmic structure (inter-onset 
interval and rests), we derive an information-content profile for the notes in a 
melody, from which we identify segment boundaries by picking peaks at points 
where the note-by-note information content is high relative to the local context 
(see Müllensiefen et al., 2008, for further details). 

The performance of our model was evaluated in two studies where we 
compared its prediction accuracy to the performance of several other models 
specifically designed for melodic segmentation, such as Grouper (Temperley, 
2001), the LBDM (Cambouropoulos, 2001), and three of the Grouping 

Preference Rules from GTTM (Lerdahl and Jackendoff, 1983). 

The data for the first evaluation study was collected from 25 expert judges in 
an experimental setting. Their task was to indicate phrase endings within each 
of 15 popular melodies on a score through repeated listenings to each melody. 
For all the 1250 note events in this dataset we computed the F-score, a widely 
used evaluation measure in information retrieval (see e.g., Jurafsky and Martin, 
2000), to indicate the correspondence between the algorithmic segmentation 
solutions and the boundaries selected by at least 50% of the experimental 
participants; this is merely a majority vote—more principled approaches will be 
applied in future work. The F score can vary between 0, when there is no 
correspondence, and 1, indicating perfect agreement between model and 
ground truth data. 

The second evaluation study used 1705 German folk songs from the Essen 
collection (Schaffrath, 1995) as ground truth data. This dataset comprised 
78,995 notes at an average of about 46 events per melody and overall about 
12% of notes fall before boundaries. Phrase boundaries were annotated by the 
musicologist who encoded the data, and the F-scores on this dataset reflect the 
degree to which the boundaries predicted by a given model correspond to those 
annotated in the scores. 

 

 



 

Model F (Essen data) F (experimental data) 

Grouper 0.65 0.76 

LBDM 0.62 0.71 

GPR2a 0.60 0.76 

IDyOM 0.58 0.77 

GPR2b 0.38 0.16 

GPR3a 0.34 0.22 

GPR3d 0.29 0.08 

Always 0.22 0.14 

Never 0.00 0.00 

  

Table 1.1:  Segmentation model performances (F-score) on the Essen folksong 
data and data from an experimental study. 

As can be seen from Table 1.1, the IDyOM model reaches a performance 
comparable to the three best performing segmentation models, namely 
Grouper, LBDM, and the GPR2a rule from GTTM. An acceptable melodic 
segmentation can be obtained by picking the peaks in the information content 
profile produced by the general-purpose learning model, suggesting that 
unexpectedness (as measured by information content) is very strongly related 
to boundary detection in melodies. 

1.3.5  Discussion 

In this section, we have described in outline the IDyOM model of music 
cognition that has been developed over several years, and which is still 
developing. While this model is still in its infancy, it has demonstrated a capacity 
to perform reasonably reliably and to a reasonable level of competence on 
certain well-defined, restricted, appropriate tasks. What is more, the model is 
able to describe two distinct (though not separate) phenomena, pitch 
expectation and phrase segmentation; we believe this property is 
methodologically important enough to deserve a name, and so we call the 
phrase segmentation model, which is derived from the pitch expectation model 
without changing it, a meta-model (because it is a model beyond the original 
model using the same process). Finally, the IDyOM model provides a 
mechanism learned from, but independent from any prior knowledge of, the 
data over which it operates and is therefore a candidate explanatory model of 
why the corresponding observed human behaviour is as it is, at this level of 
abstraction. IDyOM provides supporting evidence, therefore, for the hypothesis 
that, at some level of abstraction, this kind of music-cognitive processing is 
effectively modelled by statistics and probability (Huron, 2006, Temperley, 
2007). 

How, then, does this model relate to the generation of music?  In terms of the 



 

CSF, we can use IDyOM to estimate the probability of an entire melodic 
composition, giving us R, and choose a threshold below which any composition 
will be deemed “not a melody”. So much is easy; defining T and E, however, is 
less so. First, what makes a “good” melody?  Ponsford et al. (1999) initially 
hypothesised that music with high probability would be good, but this was 
quickly shown not to be the case: rather, very highly probable pieces tend to be 
syntactically correct, but musically dull. We suggest, in fact, that one way to 
characterise E would be to look at dynamic changes in the information-theoretic 
measures introduced above, as they vary with time. However, before we can 
properly consider trying to find good solutions, we need to be able to find any 
solution which conforms to R to any reasonable level. Minimally, this is what T 
is for. In the next section, we present the first stages of development on a 
potential creative system based on the cognitive model described above, which 
works by applying a standard method of string generation to the production of 
melodies from its learnt Markov model. 

Of course, the model we have presented here leaves a lot to be desired in 
terms of general musical properties, such as those in harmony, rhythm, metre, 
or in musical contexts where these notions do not hold sway or are, at least, 
different. This is the way of the reductionist scientific method: one must delay 
gratification for quite a long time, when modelling complex phenomena. 

However, we believe that our approach is applicable in the above contexts, 
either in addition to or instead of the existing data and representation: our 
underlying learning model is amenable to study in any musical context 
representable by discrete symbols. In principle, those symbols can denote 
anything from complex polyphony to harmonic labels, to sophisticated 
representations of timbre and sound spectra. Even in continuous contexts, there 
are related models which may apply, though there are open questions as how 
to combine them with the discrete ones. Since human perception tends to be 
categorical, we may even hypothesise that the continuous models are more 
than we need—at least until we have empirical evidence otherwise. 

The immediate focus required, therefore, to expand this thinking to other 
styles and kinds of music, is on representations at an appropriate level of 
abstraction of the percepts generated by our senses, which can then be used in 
supporting or falsifying our learning model. Evidently, there is a rich vein of work 
to be mined here, and some of it will be future work for us. 

1.4  A simple computational model of musical creativity 

1.4.1  Introduction 

We now describe our experimental exploration of the generative capacity of our 
perceptual model. Following Johnson-Laird (1991), we analyse the 
computational constraints of the melody composition task in two ways: first, 
examining whether our learned finite context grammars can compose 
stylistically-successful melodies or whether more expressive grammars are 



 

needed; and second, determining which representational structures are needed 
for the composition of successful melodies. 

Our experiment is designed to test the hypothesis that our statistical models 
are capable of generating melodies which are deemed stylistically successful in 
the context of a specified tradition. Three multiple-feature systems (Pearce, 
2005) were trained on a dataset of chorale melodies, and were then used to 
generate melodies which were empirically evaluated. As described below, the 
three IDyOM systems are equivalent except for the sets of derived features they 
use to generate their pitch predictions.  

Our work differs in several ways from extant statistical modelling for music 
generation, in particular, in that no symbolic constraints were imposed on the 
generation process—it was based entirely on the learnt models. This focuses 
the analysis more sharply on the inherent capacities of statistical finite context 
grammars, since our goal was to examine the synthetic capabilities of purely 
statistical, data-driven models of melodic structure. While most previous 
approaches used sequential random sampling to generate music from statistical 
models, to generate our output, we used the Metropolis-Hastings algorithm, a 
Markov Chain Monte Carlo (MCMC) sampling method (MacKay, 1998). The 
following description applies it within our generation framework. Given a trained 
multiple-feature model m for some basic feature "b, in order to sample from the 

target distribution pm (s $ ["b]*), the algorithm constructs a Markov chain in the 

space of possible feature sequences ["b]* as follows (Notation: #"! denotes 

assignment; #++! denotes incrementation; #an event! means a musical note, 
which is a collection of features, in the terms used above): 

 

1. number of iterations N " a large value; iteration number k " 0; initial 

state s0 some feature sequence tj1 $ ["b]* of length j; 

2. select event index 1 # i # j at random or based on some ordering of the 

indices;  

3. let s!k be the sequence obtained by replacing event ti at index i of sk with a 
new event t!k sampled from a distribution q which may depend on the 
current state sk – in the present context, an obvious choice for q would be 
{pm (s (t |t1

i-2} t$ ["b] ; 

4. accept the proposed sequence with probability  
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5. if accepted, sk+1 " s!k , else sk+1 " sk;  

6. if k < N, k++ and iterate from 2, else return sk. 

If N is large enough, the resulting event sequence sN-1  is guaranteed to be an 



 

unbiased sample from the target distribution pm["b]*. However, there is no 

method of assessing the convergence of MCMCs nor of estimating the number 
of iterations required to obtain an unbiased sample (MacKay, 1998). Because 
these sampling algorithms explore the state space using a random walk, they 
can still be trapped in local minima. However, we expect that this method will be 
better than sequential random sampling at generating melodies that faithfully 
represent the inherent capacities of the Systems.4 

Finally, to evaluate the systems as computational models of melodic 
composition, we developed a method based on the CAT. The method, 
described fully by Pearce (2005), obtains ratings by expert judges of the stylistic 
success of computer generated compositions and existing compositions in the 
target genre. The empirical nature of this method makes it preferable to the 
exclusively qualitative analyses typically adopted and we expect it to yield more 
revealing results than the Turing test methodology used in previous research 
(Hall and Smith, 1996, Triviño-Rodriguez and Morales-Bueno, 2001). 

1.4.2  Hypotheses 

We use three different Systems to examine which representational structures 
are needed for competent melody generation. Our null hypotheses are that 
each System can generate melodies rated as equally stylistically successful in 
the target style as existing, human-composed melodies. 

System A is a single-feature system that generates predictions based on 
chromatic pitch alone. We expect the null hypothesis for the simplistic System A 
to be refuted. System B is multiple-feature system whose feature-set was 
optimised through forward, stepwise feature selection to provide the closest fit 
to human expectancy judgements in chorale melodies (Manzara et al., 1992). 
The set of three features selected included features related to tonality and 
melodic structure with an influence of both rhythmic structure and phrase 
structure. For this System, Baroni!s (1999) proposal that composition and 
listening involve equivalent grammatical structures is relevant. If the 
representational structures underlying listening to and composition of music are 
similar, we would expect grammars which model perceptual processes well to 
generate satisfactory compositions. Since System B represents a satisfactory 
model of the cognition of pitch structure in the chorale genre, we may expect to 
retain the null hypothesis for this system. 

System C is a multiple-feature system whose feature-set was optimised 
through forward, stepwise feature selection to yield the best pitch prediction 
performance over the entire chorale dataset. The selected set of nine features 
included features related to pitch, melodic structure and tonal structure with 
strong interactions with rhythmic, metric and phrase structure. In terms of model 
selection for music generation, highly predictive theories of a musical style, as 
measured by information content, should generate original and acceptable 
works in the style (Conklin and Witten, 1995). Systems A, B and C in turn 
exhibit increasing accuracy in predicting unseen melodies from the dataset. On 



 

this basis, we may expect to retain the null hypothesis for System C. 

1.4.3  Method 

Our judges were 16 music researchers or students at City University, London, 
Goldsmiths, University of London, and the Royal College of Music. Seven 
judges reported high familiarity with the chorale genre and nine were 
moderately familiar. 

Our dataset is a subset of the chorale melodies placed in the soprano voice 
and harmonised in four parts by J. S. Bach. These melodies are characterised 
by stepwise patterns of conjunct intervallic motion and simple, uniform rhythmic 
and metric structure. Phrase structure is explicitly notated. Most phrases begin 
on the tonic, mediant or dominant and end on the tonic or dominant; the final 
phrase almost always ends with a cadence to the tonic. Our stimuli were as 
follows. Seven existing base melodies were randomly selected from the set of 
chorales in the midrange of the distribution of average information content 
(cross-entropy) values computed by System A. All 7 were in common time; 6 
were in major keys and 1 was minor; they were 8–14 bars (mean 11.14) and 
33–57 events (mean 43.43) long. The base melodies were removed from the 
training dataset. 7 novel melodies were generated by each System, via 5000 
iterations of Metropolis sampling using the 7 base chorales as initial states. 
Only pitch was sampled: time and key signatures and rhythmic and phrase 
structure were left unchanged. Figure 1.2 shows one base chorale melody and 
the three melodies generated using it; Pearce (2005) gives further examples. 

  

 

J. S. Bach: Jesu, meiner Seelen 

Wonne (BWV 359) 
System B: 

  
System A: System C: 

  

  

Figure 1.2:  An example of one base chorale melody and the three melodies 
generated using it. 

Our judges supplied their responses individually and received instructions 
verbally and in writing. We told them they would hear a series of chorale 



 

melodies in the style of Lutheran hymns and asked them to listen to each entire 
melody before answering two questions about it by placing circles on discrete 
scales in the response booklet. The first question was, “How successful is the 
composition as a chorale melody?” Judges were advised that their answers 
should reflect such factors as conformity to important stylistic features, tonal 
organisation, melodic shape and interval structure; and melodic form. Answers 
to this question were given on a seven-point numerical scale, 1–7, with anchors 
marked low (1), medium (4) and high (7). To promote an analytic approach to 
the task, judges were asked to briefly justify their responses to the first question. 
The second question was, “Do you recognise the melody?” Judges were 
advised to answer “yes” only if they could specifically identify the composition 
as one they were familiar with.  

The experiment began with a practice session during which judges heard two 
human-composed melodies from the same original genre (but not one of those 
in the test set). These practice trials were intended to set a judgemental 
standard for the subsequent test session. This departs from the CAT, which 
encourages judges to rate each stimulus in relation to the others by 
experiencing all stimuli before making their ratings. However, here, we intended 
the judges to use their expertise to rate the stimuli against an absolute 
standard: the body of existing chorale melodies. Judges responded as 
described above for both of the items in the practice block. The experimenter 
remained in the room for the duration of the practice session after which the 
judges were given an opportunity to ask any further questions; he then left the 
room before the start of the test session. 

In the test session, the 28 melodies were presented to the judges, who 
responded to the questions. The melodies were presented in random order 
subject to the constraints that no melody generated by the same system nor 
based on the same chorale were presented sequentially. A reverse 
counterbalanced design was used, with eight of the judges listening to the 
melodies in one such order and the other eight listening to them in the reverse 
order. 

1.4.4  Results 

We report analyses of the 28 melodies from our test session: we discarded the 
data from the practice block. 

Inter-judge Consistency 

All but two of the 120 pairwise correlations between judges were significant at 
p<0.05 with a mean coefficient of r(26)=0.65 (p<0.01). Since there was no 
apparent reason to reject the judges involved in the two non-significant 
correlations, we did not do so. This high consistency warrants averaging the 
ratings for each stimulus across individual judges in subsequent analyses. 



 

Presentation Order and Prior Familiarity 

Two factors which might influence the judges! ratings are the order of 
presentation of the stimuli and prior familiarity. The correlation between the 
mean success ratings for judges in the two groups was r(26)=0.91,p<0.01 
indicating a high degree of consistency across the two orders of presentation, 
and warranting the averaging of responses across the two groups; and, 
although the mean success ratings tended to be slightly higher when judges 
recognised the stimulus, a paired t test revealed no significant difference: 
t(6)=2.07,p=0.08. 

Influence of Generative System and Base Chorale 

Now we examine the primary question: the influence of generative system on 
the ratings of stylistic success. The mean success ratings for each stimulus, 
shown in Table 1.2a, suggest that the original chorale melodies were rated 
higher than the computer-generated melodies while the ratings for the latter 
show an influence of base chorale but not of generative system. Melody C249 is 
an exception, attracting high average ratings of success. We analysed the data 
with Friedman!s rank sum tests, using within-subjects factors for generative 
system with 4 levels (Original by J. S. Bach, System A, B, C) and base chorale 
with 7 levels (249, 238, 365, 264, 44, 153 and 147)  

 (a)  

Base A B C Original Mean 

 249 2.56 2.44 5.00 6.44 4.11 

238 3.31 2.94 3.19 5.31 3.69 

365 2.69 1.69 2.50 6.25 3.28 

264 1.75 2.00 2.38 6.00 3.03 

44 4.25 4.38 4.00 6.12 4.69 

141 3.38 2.12 3.19 5.50 3.55 

147 2.38 1.88 1.94 6.50 3.17 

Mean 2.90 2.49 3.17 6.02 3.65 

 (b)  

Statistic A B C Original 

Median 2.86 2.57 3.07 5.93 

Q1 2.68 2.25 2.68 5.86 

Q3 3.29 2.75 3.61 6.29 

IQR 0.61 0.50 0.93 0.43 

   

Table 1.2:  (a) The mean success ratings for each stimulus and means 
aggregated by generative system and base chorale. (b) The median, quartiles 

and inter-quartile range of the mean success ratings for each generative 



 

system. 

We examined the influence of generative system in an unreplicated complete 
block design using the mean success ratings aggregated for each subject and 
generative system across the individual base chorales. Summary statistics for 
this data are shown in Table 1.2b. The Friedman test revealed a significant 
within-subject effect of generative system on the mean success ratings: $2(3) = 

33.4, p < 0.01. We compared the factor levels pairwise using Wilcoxon rank 
sum tests with Holm!s Bonferroni correction for multiple comparisons: the 
ratings for the original chorale melodies differ significantly from the ratings of 
melodies generated by all three computational systems (p < 0.01). Furthermore, 
the mean success ratings for the melodies generated by System B were found 
to be significantly different from those of the melodies generated by Systems A 
and C (p < 0.03). These results suggest that none of the systems is capable of 
consistently generating chorale melodies that are rated as equally stylistically 
successful as those in the dataset and that System B performed especially 
poorly. 

1.4.5  Learning from Qualitative Feedback 

Objective Features of the Chorales 

Next, we aim to identify how the Systems lack compositionally, by examining 
which objective musical features of the stimuli the judges used in making their 
ratings of stylistic success. To achieve this, we analysed the stimuli qualitatively 
and developed a set of corresponding objective descriptors, which we then 
applied in a series of multiple regression analyses using the rating scheme, 
averaged across stimuli, as a dependent variable. We now present the 
descriptive variables, their quantitative coding and the analysis results. 

The chorales generated by our systems are mostly not very stylistically 
characteristic of the dataset, especially in higher-level form. From the judges! 
qualitative comments, we identified stylistic constraints describing the stimuli 
and distinguishing the original melodies. We grouped them into five 
categories—pitch range; melodic structure; tonal structure; phrase structure; 
and rhythmic structure—each covered by one or more predictor variables. 

Pitch Range 

 The dataset melodies span a pitch range of about an octave above and below 
C, favouring the centre of this range. The generated melodies are constrained 
to this range, but some tend towards extreme tessitura. We developed a 
predictor variable pitch centre to capture this difference, reflecting the absolute 
distance, in semitones, of the mean pitch of a melody from the mean pitch of 
the dataset (von Hippel, 2000). Another issue is the overall pitch range of the 
generated chorales. The dataset melodies span an average range of 11.8 
semitones. By contrast, several of the generated melodies span pitch ranges of 



 

16 or 17 semitones, with a mean pitch range of 13.9 semitones; others have a 
rather narrow pitch range. We captured these qualitative considerations in a 
quantitative predictor variable pitch range, representing the absolute distance, 
in semitones, of the pitch range of a melody from the mean pitch range of the 
dataset. 

Melodic Structure 

 There are several ways in which the generated melodies do not consistently 
reproduce salient melodic features of the original chorales. The most obvious is 
a failure to maintain a stepwise pattern of movement. While some generated 
melodies are relatively coherent, others contain stylistically uncharacteristic 
leaps of an octave or more. Of 9042 intervals in the dataset melodies, only 57 
exceed a perfect fifth and none exceeds an octave. To capture these deviations, 
we created a quantitative predictor variable called interval size, representing the 
number of intervals greater than a perfect octave in a melody. The generated 
chorales also contain uncharacteristic discords such as tritones or sevenths. 
Only 8 of the 9042 intervals in the dataset are tritones or sevenths (or their 
enharmonic equivalents). To capture these deviations, we created a quantitative 
predictor variable interval dissonance, representing the number of dissonant 
intervals greater than a perfect fourth in a melody. 

Tonal Structure 

 Since System A operates exclusively over representations of pitch, it is not 
surprising that most of its melodies fail to establish a key note and exhibit little 
tonal structure. However, we might expect Systems B and C to do better. While 
the comments of the judges suggest otherwise, they may have arrived at a tonal 
interpretation at odds with the intended key of the base chorale. To 
independently estimate the perceived tonality of the test melodies, Krumhansl!s 
(1990) key-finding algorithm, using the revised key profiles of Temperley (1999) 
was applied to each of the stimuli. The algorithm assigns the correct keys to all 
seven original chorale melodies. While the suggested keys of the melodies 
generated by System A confirm that it does not consider tonal constraints, the 
melodies generated by Systems B and C retain the key of their base chorale in 
two and five cases respectively. Furthermore, especially in the case of System 
C, deviations from the base chorale key tend to be to related keys (either in the 
circle of fifths or through relative and parallel major/minor relationships). This 
suggests some success on the part of the more sophisticated systems in 
retaining the tonal characteristics of the base chorales. 

Nonetheless, the generated melodies are often unacceptably chromatic, 
which obscures the tonality. Therefore, we developed a quantitative predictor 
called chromaticism, representing the number of chromatic tones in the 
algorithm!s suggested key. 

Phrase Structure 



 

 The generated chorales typically fail to reproduce the implied harmonic rhythm 
of the originals and its characteristically strong relationship to phrase structure. 
In particular, while some of the generated melodies close on the tonic, many fail 
to imply stylistically satisfactory harmonic closure. To capture such effects, we 
created a variable called harmonic closure, which is 0 if a melody closes on the 
tonic of the key assigned by the algorithm and 1 otherwise. Secondly, the 
generated melodies frequently fail to respect thematic repetition and 
development of melodic material embedded in the phrase structure of the 
chorales. However, these kinds of repetition and development of melodic 
material are not represented in the present model. Instead, as a simple indicator 
of complexity in phrase structure, we created a variable phrase length, which is 
0 if all phrases are of equal length and 1 otherwise. 

Rhythmic Structure 

 Although the chorale melodies in the dataset tend to be rhythmically simple, the 
judges! comments revealed that they were taking account of rhythmic structure. 
Therefore, we adapted three further quantitative predictors modelling rhythmic 
features from Eerola and North!s (2000) expectancy-based model of melodic 
complexity. Rhythmic density is the mean number of events per tactus beat. 
Rhythmic variability is the degree of change in note duration (i.e., the standard 
deviation of the log of the event durations) in a melody. Syncopation estimates 
the degree of syncopation by assigning notes a strength in a metric hierarchy 
and averaging the strengths of all the notes in a melody; pulses are coded such 
that lower values are assigned to tones on metrically stronger beats. All three 
quantities increase the difficulty of perceiving or producing melodies (Eerola and 
North, 2000). 

 

The mean success ratings for each stimulus were regressed on the predictor 
variables in a multiple regression analysis. Due to significant collinearity 
between the predictors, in each analysis, redundant predictors were removed 
through backwards stepwise elimination using the Akaike Information Criterion 
(Venables and Ripley, 2002).  

 

 

Predictor % Std. Error t p 

(Intercept) 6.4239 0.3912 16.42 0.0000 

Pitch Range -0.29 0.08 -3.57 < 0.01 

Pitch Centre -0.21 0.10 -2.01 < 0.1 

Interval Dissonance -0.70 0.28 -2.54 < 0.05 

Chromaticism -0.27 0.03 -8.09 < 0.01 

Phrase Length -0.53 0.28 -1.91 < 0.1 

Overall model: R = 0.92, Radj
2
 = 0.81, F(5, 22) = 25.04, p < 0.01 

 Table 1.3:  Multiple regression results for the mean success ratings of each test melody. 



 

More positive values of the predictors indicate greater deviation from the 
standards of the dataset (for pitch range and centre) or increased melodic 
complexity (for the remaining predictors), so we expect each predictor to show a 
negative relationship with the success ratings. The results of the multiple 
regression analysis with the mean success ratings as the dependent variable 
are shown in Table 1.3. The overall model accounts for approximately 85% of 
the variance in the mean success ratings. Apart from rhythmic structure, at least 
one predictor from each category made at least a marginally significant 
contribution to the fit of the model. Coefficients of all the selected predictors are 
negative as predicted. Overall, the model indicates that the judged success of a 
stimulus decreases as its pitch range and centre depart from the mean range 
and centre of the dataset, with increasing numbers of dissonant intervals and 
chromatic tones and if it has unequal phrase lengths. 

1.4.6  Improving the Computational Systems 

The constraints identified above mainly concern pitch range, intervallic structure 
and tonal structure. To examine whether the Systems can be improved to 
respect such constraints, we added several viewpoints to those used in 
selecting System C and the resulting models were analysed in the context of 
prediction performance.  

Regarding tonal structure, it seems likely that the confusion of relative minor 
and major modes is due to the failure of any of the Systems to represent mode, 
so we added appropriate features to examine this hypothesis. We also 
hypothesise that the skewed distribution of pitch classes at phrase beginnings 
and endings can be better modelled by linked features representing scale 
degrees at phrase beginnings and endings. Finally, on the hypothesis that 
intervallic structure is constrained by tonal structure, we included a further 
feature representing an interaction between pitch interval and scale degree. 

To examine whether the Systems can be improved to respect such 
constraints, we added the four selected features to the feature selection set 
used for System C. We ran the same feature selection algorithm over this 
extended feature space to select feature subsets which improve prediction 
performance; the results are given by Pearce and Wiggins (2007). In general, 
the resulting multiple-feature System, D, showed a great deal of overlap with 
System C: just three of the nine features present in System C were not selected 
for inclusion in System D. However, three of the four new features were 
selected for inclusion in System D. Ultimately, System D exhibits a lower 
average information content (H = 1.91) than System C (H = 1.95) in predicting 
unseen compositions in the dataset. The significance of this difference was 
confirmed by paired t tests over all 185 chorale melodies: t(184) = 6.00, p < 
0.01.  

1.4.7  A Melody Generated by System D 

We now present preliminary results on System D!s capacity to generate 



 

stylistically successful chorale melodies. We used it to generate several 
melodies, as described above, with the same base melodies. 

 

 

System D: Jesu, meiner Seelen Wonne 

 

 Figure 1.3:  Melody generated by System D, based on the same chorale as 
Figure 1.2. 

Figure 1.3 shows System D!s most successful melody, based on Chorale 
365. Its tonal and melodic structure are much more coherent than System C!s 
melodies. Our multiple regression model, developed above to account for the 
judges! ratings of stylistic success, predicts that this melody would receive a 
rating of 6.4 on a seven-point scale of success as a chorale melody. While this 
result is positive, other melodies were less successful; System D must be 
analysed using our method to examine its ability to consistently compose 
stylistically successful melodies. 

1.4.8  Discussion and conclusions of the experiment 

Our statistical finite context grammars did not meet the computational demands 
of chorale melody composition, regardless of the representational primitives 
used. Since we attempted to address the limitations of previous context-
modelling approaches to generating music, we might conclude that more 
powerful grammars are needed for this task. However, other approaches are 
possible. Further analysis of the capacities of finite context modelling systems 
may prove fruitful: future research should use the methodology developed here 
to analyse System D, and identify and correct its weaknesses. The MCMC 
generation algorithm may be responsible for failure, rather than the limitation of 
the models to finite context representations of melodic structure: more 
structured generation strategies, such as pattern-based sampling techniques, 
may be able to conserve phrase-level regularity and repetition in ways that our 
Systems were not. 

Our evaluation method also warrants discussion. The adapted CAT yielded 
insightful results for ratings of stylistic success even though the judges were 
encouraged to rate the stimuli according to an absolute standard (cf. Amabile, 



 

1996). However, the results suggest possible improvements: first, avoid any 
possibility of method artefacts by randomising the presentation order of both 
test and practice items for each judge and also the order in which rating scales 
are presented; second, the judges! comments sometimes reflected aesthetic 
judgements, so they should also give ratings of aesthetic appeal, to delineate 
subjective dimensions of the product domain in the assessment (Amabile, 
1996); and third, though influence of prior familiarity with the test items was 
ambiguous, bias resulting from recognition should be avoided. 

Our results suggest that the task of composing a stylistically successful 
chorale melody presents significant challenges as a first step in modelling 
cognitive processes in composition. Nonetheless, our evaluation method proved 
fruitful in examining the generated melodies in the context of existing pieces in 
the style. It facilitated empirical examination of specific hypotheses about the 
models through detailed comparison of the generated and original melodies on 
several dimensions. It also permitted examination of objective features of the 
melodies which influenced the ratings and subsequent identification of 
weaknesses in the Systems and directions for improving them. This practically 
demonstrates the utility of analysis by synthesis for evaluating cognitive models 
of composition—if it is combined with an empirical methodology for evaluation 
such as that developed here. 

1.5  Summary and Conclusions 

In this chapter, our aim has been to connect music cognition and creativity 
conceptually and computationally by covering the issues that arise when we try 
to model human cognition and behaviour in these domains. We reviewed the 
literature on cognitive modelling and paid special attention to existing 
computational cognitive models of perception and composition. We also 
summarised an evaluation methodology (CAT) for systems that perform 
creative tasks. This methodology chimes well with the Creative Systems 
Framework (CSF) which distinguishes a set of rules, R, according to which a 
creative product can be constructed, a rule set, E  which is used for evaluation 
of creative output, and a set of rules, T  which can be used to traverse R.  

The computational cognitive model that we have examined in some detail is 
based on an unsupervised machine learning paradigm and was originally 
constructed as a general model of human melodic learning. When applied to the 
prediction of melodic expectation, the basic model shows a performance 
superior to other models specifically designed to predict melodic expectation. 
When extended to the further task of melody segmentation, the resulting meta-
model!s performance is comparable with specialist segmentation models. These 
results point to the fact that the model seems to capture a more general, 
underlying perceptual mechanism and we suggest, therefore and because it is 
based on unsupervised machine learning, that it may be an explanatory model 
for both these cognitive phenomena, at this level of abstract representation. 

Finally, we applied the pitch expectation model to the creative task of melody 



 

composition and evaluated the generated melodies in a user study applying a 
variant of the CAT evaluation methodology. Despite its failure to consistently 
compose melodies indistinguishable from original melodies of the target style, 
the system has produced a number of acceptable melodies. We argue that the 
percentage of #good melodies! among its output is of less importance than the 
fact any acceptable melodies were produced by an unsupervised learning 
model that lacks any pre-defined knowledge of musical structure but gains its 
knowledge exclusively through unsupervised learning on a training set. This 
means that we cannot be accused of showing the model how to appear to be 
creative and makes it applicable to any musical style or corpus. 

We believe this to be the first time that an empirically validated computational 
cognitive model based on unsupervised machine learning has been used as the 
defining context (R) for a creative system, and it is therefore satisfactory that we 
have any good results at all, especially given that we have made no attempt to 
model T or E in a realistic way. This work is only a beginning, but, taken 
together, the results of the perceptual modelling and the melody production task 
suggest that the methods and approach presented here constitute a productive, 
general framework for the study of computational creativity. It provides clear 
directions for the future, which we expect to generate interesting empirical and 
theoretical developments in our ongoing research. 
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1
 And we do mean “relatively” – it is absolutely clear that this is an over-simplification. 

However, one has to start somewhere. 
2
 Often therefore, we are able to learn more about brain operation from pathological 

cases (e.g., brain-damaged patients) than from normal ones. 
3
 Improvisation may be seen as a special case of composition where the composer is the 

performer and is subject to extra constraints of immediacy and fluency (Sloboda, 1985). 
4
 We do not propose Metropolis sampling as a cognitive model of melodic comparison, 

but use it merely as a means of generating melodies which reflect the internal state of 

knowledge and capacities of the trained model. 


