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Abstract. Grouping and boundary perception are central to many aspects of sensory processing
in cognition. We present a comparative study of recently published computational models of
boundary perception in music. In doing so, we make three contributions. First, we hypothesise
a relationship between expectation and grouping in auditory perception, and introduce a novel
information-theoretic model of perceptual segmentation to test the hypothesis. Although we apply
the model to musical melody, it is applicable in principle to sequential grouping in other areas
of cognition. Second, we address a methodological consideration in the analysis of ambiguous
stimuli that produce different percepts between individuals. We propose and demonstrate a solution
to this problem, based on clustering of participants prior to analysis. Third, we conduct the first
comparative analysis of probabilistic-learning and rule-based models of perceptual grouping in
music. In spite of having only unsupervised exposure to music, the model performs comparably
to rule-based models based on expert musical knowledge, supporting a role for probabilistic learning
in perceptual segmentation of music.

1 Introduction

Grouping and boundary perception are central to the understanding and modelling
of core tasks in many areas of cognitive science. They are fundamental processes in, for
example, natural language processing (eg speech segmentation and word discovery—Brent
1999b; Jusczyk 1997), motor learning (eg identifying behavioural episodes—Reynolds
et al 2007; Newtson 1973), memory storage and retrieval (eg chunking—Kurby and
Zacks 2007) and visual perception (eg analysing spatial organisation—Marr 1982).
Our focus in this paper is on the perception and cognition of music (Krumhansl 1990;
Temperley 2001), where the process by which the human perceptual system groups
sequential musical elements together is one of the most fundamental issues.

In particular, we examine the grouping of musical elements into contiguous segments
that occur sequentially in time or, to put it another way, the identification of boundaries
between the final element of one segment and the first element of the subsequent one.
This way of structuring a musical surface is usually referred to as grouping (Lerdahl
and Jackendoff 1983) or segmentation (Cambouropoulos 2006). We distinguish this kind
of perceptual aggregation of auditory elements from the integration, or fusion, of
auditory elements that occur simultaneously in time and also from the segregation
of parallel auditory streams (Bregman 1990). In musical terms, the kinds of groups we
consider correspond with motifs, phrases, sections and other aspects of musical form.
We use the term grouping structure to refer to a piece of music structured in this way.
It is taken that, just as speech is perceptually segmented into phonemes, and then
words which subsequently provide the building blocks for the perception of phrases
and complete utterances (Brent 1999b; Jusczyk 1997), motifs or phrases in music are
identified by listeners, stored in memory and made available for inclusion in higher-level
structural groups (Lerdahl and Jackendoff 1983; Peretz 1989; Tan et al 1981). The low-
level organisation of the musical surface into groups allows the use of these primitive
perceptual units in more complex structural processing and may alleviate demands on
memory.
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Grouping structure is generally agreed to be logically independent from metrical
structure (Lerdahl and Jackendoff 1983). By metrical structure, we mean the hierarch-
ical pattern of cyclically recurring accented notes that one might tap one’s foot along
to (such that, for example, the first beat of a bar might be a stronger metrical accent
than the third, which might be stronger than the second, and so on). Some evidence
for a separation between the psychological processing of the two kinds of structure
has been found in cognitive neuropsychological (Liegeoise-Chauvel et al 1998; Peretz
1990) and neuroimaging research (Brochard et al 2000). In practice, however, metrical
and grouping structures are often intimately related, and both are likely to serve as
inputs to the processing of more complex musical structures (Lerdahl and Jackendoff
1983). Nonetheless, most theoretical, empirical and computational research has con-
sidered the perception of grouping structure independently of metrical structure (Stoffer
1985 and Temperley 2001 being notable exceptions).

In this paper, we propose the hypothesis that grouping in auditory perception is
determined by perceptual expectations for auditory events. To test the hypothesis,
we first take an existing cognitive model of musical expectation, based on probabilistic
learning, and identify grouping boundaries at points of perceptual unexpectedness pre-
dicted by the model. We focus on musical melody, the cognitive task being to gather
notes together into sequential groups. Second, we collect boundary indications from a
group of listeners for fifteen melodies, deemed to have complex grouping structure,
and with lyrics, orchestration, and expressive timing and dynamics to restrict the
potential influences on perceived grouping to the pitch and timing of notes. As a result,
several of the melodies have ambiguous grouping structure affording multiple interpre-
tations which leads to low inter-participant agreement. We cope with this ambiguity
by identifying subgroups of participants sharing the same grouping interpretation of
each melody. Finally, we test our hypothesis by using the output of the probabilistic
model to predict the listeners’ responses and comparing its performance with several
existing models in the literature.

The cognitive model of expectation has been shown to provide an accurate model
of listeners’ pitch expectations in melody (Pearce et al 2010b; Pearce and Wiggins 2006).
In one experiment, for example, the probabilistic model accounted for 85% of the variance in
listener’s expectations elicited by fragments of British folk songs (Pearce and Wiggins 2006).
It consistently predicts listeners’ pitch expectations better than the best-performing rule-
based model (Schellenberg 1997) in the literature. Here, we use the model to predict
perceptual grouping boundaries at points of perceived unexpectedness and uncertainty,
concepts which we formalise quantitatively in information-theoretic terms (Attneave 1959;
Barlow 1959; Shannon 1948). In contrast to cognitive models consisting of hard-wired,
domain-specific rules, the probabilistic model of melodic expectation and segmentation
learns about the structure of an auditory environment through experience and therefore
has the potential to account for the acquisition and development of these cognitive pro-
cesses and to generalise naturally to expectations and sequential segmentation in different
musical styles, auditory domains, or sensory modalities. The model learns in an unsuper-
vised manner; it is never told explicitly where boundaries occur. As with word boundaries
in speech, there is little evidence that musical boundaries are explicitly marked for the
listener; and listeners readily perceive boundaries in the absence of explicit markers
(Saffran et al 1999).

In a previous study, Pearce et al (2010a) evaluated the probabilistic segmentation
model’s ability to correctly predict the boundaries marked by a musicologist in a
collection of 1705 German folk songs and compared the model’s performance to nine
existing grouping models. Here we extend this work to evaluate the model’s efficacy in
predicting perceived boundaries collected from twenty-five musically trained participants
who provided explicit segmentations of fifteen melodies.
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2 Background

2.1 Theoretical approaches

2.1.1 A generative theory of tonal music. Traditional theories of melodic grouping associate
boundaries with local discontinuities or changes between events in terms of temporal
proximity, pitch, duration, and dynamics. Perhaps the best known examples are the group-
ing preference rules (GPRs) of the Generative Theory of Tonal Music (GTTM —Lerdahl
and Jackendoff 1983), which was inspired by Chomskian linguistics. The most widely
studied of the GPRs predict that phrase boundaries will be perceived between two
melodic events whose temporal proximity is less than that of the immediately neighbour-
ing events due to a slur, a rest (GPR 2a), or a relatively long interval between the onset
of one note and the onset of the next (inter-onset interval or IOI) (GPR 2b), or when
the transition between two events involves a greater change in register (GPR 3a),
dynamics (GPR 3b), articulation (GPR 3c¢), or duration (GPR 3d) than the immediately
neighbouring transitions. These local GPRs were directly inspired by the principles of
proximity (GPR 2) and similarity (GPR 3) developed to account for figural grouping
in visual perception by the Gestalt school of psychology (eg Koftka 1935). GPR 4 states
that where the effects of GPRs 2 and 3 are relatively more pronounced, a larger level
grouping boundary may be placed. GPR 6 predicts that grouping boundaries are
perceived in accordance with musical parallelism (eg at the same point in the bar or
at similar points with respect to a repeated motif). The GPRs of GTTM have inspired
some of the computational models of grouping reviewed in section 2.3.

2.1.2 The implication-realisation theory. Narmour (1990) presents the implication-realisation
(IR) theory of music cognition which, like GTTM, is intended to be general (although
the initial presentation was restricted to melody). However, while GTTM operates
statically on an entire piece of music, the IR theory emphasises the dynamic processes
involved in perceiving music as it occurs in time. The theory posits two distinct percep-
tual systems: the bottom—up system is held to be hard-wired, innate and universal,
while the top—down system is held to be learnt through musical experience. In the
bottom —up system, sequences of melodic intervals vary in the degree of closure that
they convey. An interval which is unclosed is said to be an implicative interval and
generates expectations for the following interval, termed the realised interval. The expec-
tations generated by implicative intervals for realised intervals are described by Narmour
(1990) in terms of several principles of continuation which are, again, influenced by
the Gestalt principles of proximity, similarity, and good continuation. Strong closure,
however, signifies the termination of ongoing melodic structure and the melodic groups
either side of the boundary thus created can share different amounts of structure
depending on the degree of closure conveyed. The IR theory provides the musicological
background for hypothesised link between expectation and grouping in perception and
the cognitive models based on this hypothesis (see section 2.4).

2.2 Experimental paradigms and results

Early studies of musical segmentation (Gregory 1978; Sloboda and Gregory 1980;
Stoffer 1985) provided basic evidence that listeners perceptually organise melodies
into structural groups, using a click localisation paradigm adapted from research on
perceived phrase structure in spoken language (Fodor and Bever 1965; Ladefoged and
Broadbent 1960). More recently, two kinds of experimental tasks have been used to study
perceptual grouping in music.

The first is a short-term memory recognition paradigm introduced by Dowling
(1973), based on studies of phrase perception in language (Bower 1970; Waugh and
Norman 1965). In a typical experiment, listeners are first presented with a musical
stimulus containing one or more hypothesised boundaries before being presented with
a short excerpt (the probe) and asked to indicate whether it appeared in the stimulus.
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The critical probes either border on or straddle a hypothesised boundary and it is
expected that owing to perceptual grouping, the former will be recalled more accu-
rately or efficiently than the latter. Dowling’s original experiment demonstrated that
silence contributes to the perception of melodic segment boundaries (cf GPR 2a).
Using the same paradigm, Tan et al (1981) demonstrated the influence of harmonic
closure, especially for musicians.

In the second paradigm, participants provide explicit judgments of boundary loca-
tions while listening to the musical stimulus. The indicated boundaries are subsequently
analysed to discover which principles guide perceptual segmentation. Using this approach
with short musical excerpts, Deliege (1987) found that musicians and (to a lesser extent)
non-musicians identify segment boundaries in accordance with the GPRs of GTTM
(Lerdahl and Jackendoff 1983), especially those relating to rests or long notes and changes
in timbre or dynamics. These factors were also reflected in large-scale segmentation
by musically trained listeners of piano works composed by Stockhausen and Mozart
(Clarke and Krumhansl 1990). Frankland and Cohen (2004) collected explicit boundary
judgments from participants listening to six melodies (nursery rhymes and classical
themes) and compared these to the boundaries predicted by quantitative implementa-
tions of GPRs 2a, 2b, 3a, and 3d (see table 1). The results indicated that GPR 2b
produced consistently strong correlations with the empirical boundary profiles, while
GPR 2a also received support in the one case where it applied. No empirical support
was found for GPRs 3a and 3d. However, several instances of perceived boundaries
were not predicted by any of the GPRs, but would have been covered by a revised version
of attack-point (GPR 2b) that predicts a boundary after an event that is relatively longer
than its two predecessors, thereby partially subsuming the function of length change
(see also Delicge 1987, experiment 1).

Given the differences between these two experimental paradigms, it is not certain
that they probe the same cognitive systems. Peretz (1989) addressed this question by
comparing the two methods on one set of stimuli (French folk melodies). The judg-
ment paradigm (online, explicit) showed that musicians and non-musicians responded
significantly more often in accordance with GPR 3d than they did with GPR 3a.
However, the recognition-memory paradigm (offline, implicit) showed no effect of boun-
dary type for either group of participants. To test the possibility that this discrepancy
is due to a loss of information in the offline probe-recognition task, Peretz carried out

Table 1. The quantification by Frankland and Cohen (2004) of GTTM’s grouping preference rules
which identify boundaries between notes based on their properties including local proximity to other
notes (GPR 2) or the extent to which they reflect local changes in pitch or duration (GPR 3).

GPR Description Note property  Boundary strength

2a rest Absolute magnitude or rest (semibreve = 1.0)
. n +ny .

2b attack-point length 1.0——=, ifn, >ny; An, >ny,

2x n,
1 otherwise

[ny —nmy| +|ny —ny

3a register change pitch height 1.0 —
2x|n, —n

| 2 if ny # oy Ay —ng| >
3

[ny —my | A|ny —ny| > |ny —ny|
1 otherwise

ny /ns, if ny = n

3d length change  length 1.0 — {m Iny. iy <,
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a third experiment in which participants listened to a probe followed by the melody
and were asked to indicate as quickly and accurately as possible whether the probe
occurred in the melody. As predicted, the results demonstrated that GPR 3d, but not
3a, predicted boundary perception. In contrast, however, Frankland and Cohen (2004)
found support for the utility of boundary formation using a retrospective recognition-
memory task, but analyses were not presented.

2.3 Cognitive models

Frankland and Cohen (2004) argue that research on the GPRs has suffered from the
fact that they have never been individually quantified. In the absence of a precise
operational definition, it is hard to compare applications of: (i) the same rule at differ-
ent locations; (ii) different rules at the same location; and (iii) different rules at different
locations. Without quantification, for example, it is impossible to say whether the
different support reported by Deliege (1987) for each of the rules actually resulted
from the selection of stimuli exhibiting strong forms of one rule and weak versions of
another. Similarly, the stimuli used by Peretz (1989) to exhibit GPR 3d also comply
with GPR 2b. To alleviate these problems, one might create artificial stimuli each of
which is consistent with just one hypothesis at the expense of ecological validity.

2.3.1 Grouping preference rules. To address the issues discussed above, Frankland and
Cohen (2004) quantified GPRs 2a, 2b, 3a, and 3d as shown in table 1. The quantifica-
tion of GPR 2a reflects the presence of rests only and not slurs. A natural result of
the individual quantifications is that they can be combined with multiple regression
used to quantify the implication contained in GPR 4 that co-occurrences of two or
more aspects of GPRs 2 and 3 lead to stronger boundaries. On the basis of their
experimental results, Frankland and Cohen suggest a revised version of GPR 2b that
applies only to notes that are relatively longer than their two predecessors.

2.3.2 The local boundary detection model. Cambouropoulos (2001) proposed a model
related to the quantified GPRs in which boundaries are associated with any local change
in interval magnitudes. The local boundary detection model (LBDM) consists of a
change rule, which assigns boundary strengths in proportion to the degree of change
between consecutive intervals, and a proximity rule, which scales the boundary strength
according to the size of the intervals involved. The LBDM operates over several inde-
pendent parametric melodic profiles P, =[x, X,, ..., X,] where k is {pitch, 101, rest},
x; > 0,i€{l,2, .., n} and the boundary strength at interval x; is given by:

Si =X X (ri—Li + ”;,i+1) > M

where the degree of change between two successive intervals:

X = x| .
——— . ifxi + X, FOAX, X, =20

o = % X @
0, if x, =x;., =0.

For each parameter k, the boundary strength profile S, = [s,, $,,..., 5,] is calculated
and normalised in the range [0, 1]. A weighted sum of the boundary strength profiles
is computed using weights derived by trial and error (0.25 for pitch and rest, and 0.5
for 10I), and boundaries are predicted where the combined profile exceeds a predefined
threshold.

Cambouropoulos (2001) found that the LBDM obtained a recall of 63%—74% of the
boundaries marked on a score by a musician (depending on the threshold and weights
used) although precision was lower at 55%. In further experiments, it was demon-
strated that notes falling before predicted boundaries were more often lengthened than
shortened in pianists’ performances of Mozart piano sonatas and a Chopin étude.
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More recently, Cambouropoulos (2006) proposed a complementary model, not
tested here, which identifies instances of melodic repetition (or parallelism, see GPR 6)
and computes a pattern segmentation profile.

2.3.3 Grouper. Temperley (2001) introduces a model called ‘Grouper’ which accepts as
input a melody, in which each note is represented by its onset time, off time, chromatic
pitch, and level in a metrical hierarchy, and returns a single, exhaustive partitioning
of the melody into nonoverlapping groups. The model operates through the application of
three phrase structure preference rules (PSPRs):

PSPR 1 (gap rule): prefer to locate phrase boundaries at (a) large IOIs (the interval
between the onset of one note and the onset of the next note) and (b) large offset-
to-onset intervals (OOI, the interval between the end of one note and the onset of the
next note); PSPR 1 is calculated as the sum of the IOI and OOI divided by the mean
IOI of all previous notes.

PSPR 2 (phrase length rule): prefer phrases with about 10 notes, achieved by penalis-
ing predicted phrases by |(log, N) —log, 10| where N is the number of notes in the
predicted phrase—the preferred phrase length is chosen ad hoc (see Temperley 2001,
page 74), to suit the corpus of music being studied (in this case, Temperley’s sample of
the EFSC) and therefore may not be general.

PSPR 3 (metrical parallelism rule): prefer to begin successive groups at the same point
in the metrical hierarchy (eg on the same beat of the bar).

The first rule is another example of the Gestalt principle of temporal proximity
(cf GPR 2 above) while the third is related to GPR 6; the second was determined
through an empirical investigation of the typical phrase lengths in a collection of folk
songs. The best analysis of a given piece is computed offline by using a dynamic pro-
gramming approach where candidate phrases are evaluated according to a weighted
combination of the three rules. The weights were determined through trial and error.
Unlike the other models, this procedure results in binary segmentation judgments rather
than continuous boundary strengths. By way of evaluation, Temperley used Grouper
to predict the phrase boundaries marked in 65 melodies from the Essen Folk Song
Collection of several thousand folk songs with phrase boundaries annotated by expert
musicologists, achieving a recall of 0.76 and a precision of 0.74.

2.34 Data oriented parsing. Bod (2001) argues for a supervised learning approach to
modelling melodic grouping structure as an alternative to the rule-based approach.
The three grammar-learning methods he proposed learn how to segment melodies by
analysing a training set of melodies explicitly segmented by a musicologist. He com-
pares the performance of three methods in matching the musicologists’ segmentations
in a test set of unseen melodies. The best-performing method, data oriented parsing
(DOP—Bod 1998), achieved an F1 score of 0.81. A qualitative examination of the folk
song reveals several cases of boundaries which cannot be explained by Gestalt principles
of pitch proximity or temporal proximity between notes but which are captured by
the DOP parser and, conversely, several cases of non-boundaries which contain large
pitch changes or time intervals between notes but which are classified correctly by the
DOP parser. Bod uses these observations to argue that grouping involves memory for
characteristic patterns rather than simple perceptual or musical principles.

2.3.5 Transition probabilities and pointwise mutual information. In discussing probabi-
listic models, we consider a melody to be a sequence of values e, e,, ..., ¢; of length j
representing some property (eg pitches taken from an alphabet E of pitch names) of
the notes in the melody. We denote a subsequence from index i to k of such a sequence
as ef. When i=k, ¢ is a single note and we use the shorthand e,. A transition
(or diagram) probability (TP) is the conditional probability of an event e¢; at index
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i1{2, ..., j} in a sequence of length j given the preceding element ¢, ,:

_count(e/ )

plele_) = 3)

count(e;_)’
where count(e!) indicates the number of times the subsequence e/ occurs in some
collection of sequences used to estimate the probabilities.

In research on language acquisition, it has been shown that infants and adults
reliably identify grouping boundaries in sequences of synthetic syllables on the basis of
statistical cues (Saffran et al 1996). In these experiments, participants are exposed to
long, isochronous sequences of syllables where the only reliable cue to boundaries
between groups of syllables is that transition probabilities are higher within than between
groups. Further research using the same experimental paradigm has demonstrated that
infants and adults use the implicitly learnt statistical properties of pitch (Saffran et al
1999), pitch interval (Saffran and Griepentrog 2001), and scale degree (Saffran 2003)
sequences to identify segment boundaries on the basis of higher digram probabilities
within than between groups.

In a comparison of cognitive models for word identification in infant-directed speech,
Brent (1999a) quantified these ideas in a model that puts a word boundary between
phonemes whenever the transition probability at e; is lower than at both e;,_, and e, ;.
Brent also introduced a related model that replaces digram probabilities with pointwise
mutual information (PMI), I(e;, ¢;_,), which measures how much the occurrence of
one event reduces the model’s uncertainty about the co-occurrence of another event
(Manning and Schiitze 1999) and is defined as:

I(e;, e; ) = log, [% . “)

While digram probabilities are asymmetrical with respect to the order of the two events,
PMI is symmetrical in this respect.) Brent (1999a) found that the PMI model out-
performed the transition probability model in predicting word boundaries in phonemic
transcripts of infant-directed speech.

Brent (1999a) implemented these models such that a boundary was placed whenever
the statistic (TP or PMI) was higher at one phonetic location than in the immediately
neighbouring locations. By contrast, here we construct a boundary-strength profile P
at each note position i for each statistic S = {TP, PMI} such that:

2S;

——if S, > S, AS > S,
P=S_+S ! ! ()

0, otherwise.

2.3.6 Model comparisons. Most of the models discussed in section 2.3 were evaluated
to some extent by their authors and, in some cases, compared quantitatively to other
models. Bod (2001), for example, compared the performance of his data-oriented pars-
ing with other closely related methods (Markov and treebank grammars). In addition,
however, a handful of studies has empirically compared the performance of different
melodic segmentation models. These studies differ in the models compared, the type of
ground truth data used and the evaluation metrics. Melucci and Orio (2002), for example,
collected the boundary indications of 17 music scholars on melodic excerpts from

(@ Manning and Schiitze (1999) note that pointwise mutual information is biased in favour of low-
frequency events inasmuch as, all other things being equal, 7 will be higher for digrams composed
of low-frequency events than for those composed of high-frequency events. In statistical language
modelling, pointwise mutual information is sometimes redefined as count(xy)I(x,y) to compensate
for this bias.
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20 works by Bach, Mozart, Beethoven, and Chopin. Having combined the boundary
indications into a ground truth, they evaluated the performance of the LBDM against
three models that inserted boundaries after fixed (8 and 15) or random (in the range
of 10 and 20) numbers of notes. Melucci and Orio report false positives, false negatives
and a measure of disagreement which show that the LBDM outperforms the other
models.

Bruderer (2008) evaluated a broader range of models in a study of the grouping
structure of melodic excerpts from six Western pop-songs. The ground truth segmenta-
tion was obtained from 21 adults with different degrees of musical training; the boundary
indications were summed within consecutive time windows to yield a quasi-continuous
boundary strength profile for each melody. Bruderer examined the performance of three
models: Grouper, LBDM, and the summed GPRs (GPR 2a, 2b, 3a, and 3d) quantified by
Frankland and Cohen (2004). The output of each model was convolved with a Gaussian
window to produce a boundary strength profile that was then correlated with the ground
truth. Bruderer reports that the LBDM achieved the best and the GPRs the worst
performance.

In another study, Thom et al (2002) compared the predictions of the LBDM and
Grouper with segmentations at the phrase and subphrase level provided by 19 musi-
cal experts for 10 melodies in a range of styles. In one experiment, the performance
of each model on each melody was estimated by averaging the F1 scores over the
19 experts. Model parameters were optimised for each individual melody. The results
indicated that Grouper tended to outperform the LBDM. Large IOIs were an impor-
tant factor in the success of both models. In another experiment, the predictions of
each model were compared with the transcribed boundaries in several datasets from
the EFSC. The model parameters were optimised over each dataset and the results again
indicated that Grouper (with mean F1 between 0.6 and 0.7) outperformed the LBDM
(mean FI1 between 0.49 and 0.56).

To summarise, the few existing comparative studies suggest that more complex
models such as Grouper and LBDM outperform the individual GPR rules even when
the latter are combined in an additive manner (Bruderer 2008). Whether Grouper or
LBDM exhibits a superior performance seems to depend on the stimuli and experi-
mental task. We are not aware of any published study that has directly compared these
rule-based models with learning-based models (such as DOP or TP/PMI).

2.4 The IDyOM model
We present a new model of melodic grouping (the information dynamics of music, or
IDyOM, model) which, unlike the GPRs, the LBDM, and Grouper, acquires knowledge
through experience, by using probabilistic learning rather than by using expert-coded
symbolic rules. It can, therefore, explain how rule-like responses to music are acquired
in melody cognition. The model differs from DOP in that it uses unsupervised, rather
than supervised, learning which makes for a more veridical cognitive model because
phrase boundaries in music, like word boundaries in speech, are not explicitly marked
for the listener. The IDyOM model takes the same overall approach and background
in experimental psychology (Saffran 2003; Saffran and Griepentrog 2001; Saffran et al
1999) as the TP/PMI models (see section 2.3.5). In contrast to these models, however,
IDyOM uses a range of strategies to improve the accuracy of its conditional probability
estimates. Before describing these aspects of the model, we first review related research
in musicology, cognitive linguistics, and machine learning that further motivates a
probabilistic approach to segmentation.

From a musicological perspective, it has been proposed that perceptual groups are
associated with points of closure where the ongoing cognitive process of expectation
is disrupted either because the context fails to stimulate strong expectations for any
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particular continuation or because the actual continuation is unexpected (Meyer 1957,
Narmour 1990, see section 2.1.2). These proposals can be given precise information-
theoretic definitions (MacKay 2003; Manning and Schiitze 1999) by reference to a
model of sequences, ¢;, composed of symbols drawn from an alphabet E (see section
2.3.5 for notational conventions). The model estimates the conditional probability of
an element at index i in the sequence given the preceding elements in the sequence:
p(e;lel™). Given such a model, the degree to which an event appearing in a given
context in a melody is unexpected can be defined as the information content (MacKay
2003), /i(e;|e; "), of the event given the context:

, 1
h(elei™) =log, ————p . (©)
o *plelef™)
The information content can be interpreted as the contextual unexpectedness associ-
ated with an event. The uncertainty of the model’s expectations in a given melodic
context can be defined as the Shannon entropy (Shannon 1948) computed by averaging
the information content over all symbols in the alphabet:

H(e ") =Y plelei Yh(elel™) . @)
ecE

We hypothesise that boundaries are perceived before events for which the unexpected-
ness of the outcome (/) and the uncertainty of the prediction (H) are high. These
correspond to two ways in which the prior context can fail to inform a listeners’
sequential predictions leading to the perception of a discontinuity in the sequence.
Segmenting at these points leads to cognitive representations of the sequence (in this
case a melody) that maximise likelihood and simplicity with respect to a prior model
(cf Chater 1996, 1999). In the current work, we focus on the information content (%),
leaving the role of entropy (H) for future work.

There is evidence that related information-theoretic quantities are important in
cognitive processing of language. For example, it has recently been demonstrated that
the difficulty of processing words is related both to their information content (Levy
2008) and the induced changes in entropy over possible grammatical continuations
(Hale 2006). Furthermore, in machine learning and computational linguistics, algo-
rithms based on the idea of segmenting before unexpected events can identify word
boundaries in infant-directed speed with some success (Brent 1999a). Similar strategies
for identifying word boundaries have been implemented by using recurrent neural
networks (Elman 1990). Recently, Cohen et al (2007) proposed a general method for
segmenting sequences based on two principles: first, so as to maximise the probability
of events to the left and right of the boundary; and second, so as to maximise the
entropy of the conditional distribution across the boundary. This algorithm was able to
successfully identify word boundaries in text from four languages as well as episode
boundaries in the activities of a mobile robot. These results in language and music
perception suggest that the relationship between expectation and grouping may generalise
across auditory domains.

The IDyOM model is presented in detail elsewhere (Pearce et al 2005; Pearce and
Wiggins 2004). It may be considered an extended version of the TP model; both models
estimate the conditional probability of a note given the preceding notes. However,
IDyOM uses a number of methods to generate more accurate probability estimates.
First, whereas TP estimates the conditional probability of a note given only the pre-
ceding note (a context of one note), IDyOM uses longer contexts (the actual length of
the context used in a given situation varies). As with human listeners, the model’s
expectations are uncertain at the start of a melody but become more accurate with
longer contexts. Second, while TP simply uses a static corpus of music to estimate its
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probabilities, IDyOM combines these static long-term predictions (reflecting the prior
musical experience of a listener) with short-term predictions learned dynamically while
listening to the current piece of music (reflecting the perception of local structure
particular to that composition). Third, while TP only applies to pitch, IDyOM also has
the ability to model many different features of music and combine them into a single
prediction.

The probabilities generated by IDyOM have been shown to predict listeners’ expec-
tations for melodic pitch better than existing rule-based models based on the IR theory
(Pearce et al 2010b; Pearce and Wiggins 2006). Here we take the same model with
two differences. First, rather than predicting just pitch, the model predicts three basic
features of notes: their pitch, IOl and OOI, and multiplies the probabilities to reach an
overall probability for a note. Second, while Pearce and Wiggins (2006) used derived
features (such as pitch interval, pitch contour, tonal scale degree, etc.) to predict pitch,
here we use only basic features to predict basic features. Based on our hypothesised
relationship between expectation violation and boundary perception, we treat the
sequence of information contents (or negative log probability, described above). We
emphasise that the model never has access to boundary information in the melodies
it is exposed to; it simply generates expectations and is in no way optimised to predict
grouping boundaries.

2.5 Peak picking
With the exception of Grouper, all models used in our analysis (including IDyOM)
produce continuous boundary strength values for each note in a melody, which reflects
the likelihood that the note is followed by a boundary. However, boundaries are usually
experienced as categorical phenomena between two groups of musical events (Lerdahl
and Jackendoff 1983). In keeping with this observation and also with previous empiri-
cal studies of melodic boundary perception, the participants in our study (described
below) were asked to indicate categorically the locations of boundaries on the grounds
that this reflects the experience of boundary perception in music. Therefore, we need
to identify categorical boundaries in the boundary strength profiles returned by the
models, so as to be able to compare their output with the boundaries indicated by
the participants.

We do this using three principles. First, the note following a boundary should have
a boundary strength greater than, or equal to, the note following it: S, > S,,,. Second,
the note following a boundary should have a greater boundary strength than the note
preceding it: S, > S,_;. Third, the note following a boundary should have a high
boundary strength relative to the local context. We implement this principle by requir-
ing the boundary strength S, to exceed by k standard deviations the mean boundary
strength computed in a linearly weighted window measured in notes from the beginning
of the piece to the preceding event:

n—1 n—1

Z(wiSi - va,l...n—l )2 Z w;S;

S, > k|=! — + = ) ®)

E w; E w;
i—1

The threshold therefore depends on the variance of the boundary strength profile up to
the current event such that the strength of recent events have a greater weight than that
of less recent ones. Thus the variance estimates should be more accurate towards the
end of a melody, although, since more distant contributions have low weights, we do not
expect any significant effect of melody length (which would in any case be consistent across
the models). To create a level playing field, we apply this procedure to the boundary profiles
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of all models (except Grouper) and choose a value of k to optimise the performance of each
model individually. This is the only way in which the output of any of the models is
optimised to fit the behavioural data; we do this so as not to unfairly impair the
performance of any model when peak picking from the boundary profiles.

3 Method

3.1 Participants

The participants were twenty-five adults with a mean age of 28.4 years (SD = 8 years).
As the experimental task required musical training, they were recruited from the
Institute of Musicology at Hamburg University including graduate and postgraduate
students as well as senior academics.®® They had played a musical instrument for an
average of 16.4 years (SD = 9 years), had played an average of 36.6 paid performances
(SD = 60.6 years) and received a mean number of 100.8 months (about 8 years) of
instrumental lessons (SD = 72.3 months). All participants were able to read and write
musical notation very fluently. Participation was on a voluntary basis.

3.2 Stimulus materials

The stimulus set comprised fifteen monophonic vocal melodies taken from popular
songs (in folk or pop styles) ranging in length from 39 to 131 note events with a mean
length of 83 notes. More detailed information about the stimuli can be found in
Appendix A. These melodies were selected on the basis of an informal pilot study
in which three expert judges were asked to segment 36 popular melodies into melodic
phrases.(® Melodies with low agreement between judges were chosen as stimuli for
the present study on the grounds that they would provide challenging test cases for the
segmentation models.

The melodies were obtained as MIDI files without lyrics, expressive timing or
dynamics. They were synthesised to CD quality audio files at their natural tempi
with a Roland Sound Canvas software synthesiser (Grand Piano timbre, MIDI patch 1).
An audio CD was created containing the entire stimulus set, including repeated presen-
tations of each melody and intervening silence.

3.3 Procedure

The participants were briefed that the purpose of the experiment was to indicate
phrase boundaries for monophonic melodies. They were not provided with a definition
of a melodic phrase or a phrase boundary and were assured that there were no right
or wrong answers in this task. To put this task in a musically meaningful context, it
was suggested that they imagine themselves as a choir director marking phrase bound-
aries in the score for an amateur choir, not formally trained in music: the boundaries
should be inserted in such a way that singers could learn, remember, and reproduce
the melodies quickly and accurately. The participants were informed that the marked
boundaries should fit best with their interpretation of the musical structure.

The participants were provided with paper scores of the melodies and were asked
to indicate strong and weak phrase boundaries by inserting symbols between notes on
the score. The melodies were presented aurally over high quality loudspeakers at
approximately 70 dB. Each melody was presented twice with a silent interval of 2 s
between each presentation and 5 s between each melody. Participants were encouraged
to insert boundary marks during or between listenings and were explicitly allowed to
correct erroneously placed marks.

@ Musically trained participants were used for two reasons. First, it was expected that they would
be better able to accurately introspect about their perception of music than nonmusicians. Second,
they would be able to accurately mark their perceptions on a score.

® One of these three judges was a co-author of the paper (DM) but none took part in the main
experiment.
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Participants were tested in three groups of 9, 11, and 5 in a quiet and acoustically
damped room. The experimenter was present throughout the experiment to read the instruc-
tions, distribute and collect response sheets, ensure the CD ran correctly, and to answer
questions and debrief the participants. The participants were seated individually at desks
some distance apart and no interaction of any kind between participants was observed.

Following the experimental session, participants reported their age, musical training,
and experience. Each test session lasted ~1 h in total after which participants were pro-
vided an opportunity to ask questions and give feedback. Overall, they indicated that
they were able to maintain good concentration levels. When asked if they were familiar
with any of the melodies, some participants indicated that they recognised melody 14.

3.4 Model implementations

While Grouper marks each note with a binary indicator (1 = boundary, 0 = no bound-
ary), the other models output a positive real number for each note which can be
interpreted as a boundary strength. To create a level playing field for these models, we
applied the same peak-picking method (see section 2.5) to produce binary boundary
indications. An optimal value of k was chosen from the set {0.25, 0.5, 1.0, 1.5, 2.0}
separately for each model. This is the only way in which the output of any model was
influenced by the behavioural data: the boundary strength profiles themselves were
never fit to the participants’ responses. For all models, the last note of a melody was
taken to be an implicit phrase boundary. The DOP method was not included in the
comparison, as an implementation that could straightforwardly be applied to MIDI
files was not available. The following model implementations were tested.

GPR 2a, GPR 2b, GPR 3a, GPR 3d: implemented as described by Frankland and Cohen
(2004); Frankland and Cohen’s revised version of GPR 2b is also included (using the
obvious implementation). In peak picking, kK = 0.25 was used for all except GPR 2a
where k£ = 0.5 and GPR 2b where k = 1.0.

GPRs: the sum of GPR 2a, GPR 2b revised, GPR 3a, GPR 3d. In peak picking, k = 1.5
was used.

LBDM : implemented and weighted as described in Cambouropoulos (2001). In peak
picking, k = 0.5 was used.

Grouper: using the implementation by Temperley and Daniel Sleator, parameterised as
described in Temperley (2001).®

TP/PMI: in peak picking, k = 0.25 for TP and k& = 2 for PMI. The digram models were
trained on the collection of folk songs and hymn melodies shown in table 2.

IDyOM: the model was trained on the melodies shown in table 2. In peak picking,
k=1.

Always, Never: the former always predicts a boundary at every event, the latter never
predicts a boundary; provided for baseline comparison.

Table 2. The collections of melodies used for training the probabilistic models. Pearce and Wiggins
(2006) showed that IDyOM models trained with this corpus can accurately predict human pitch
expectations.

Description Number of Number of Mean
compositions events (events/composition)
Canadian folk songs/ballads 152 8553 56.27
Lutheran chorale melodies 185 9227 49.88
German folk songs 566 33087 58.46
Total 903 50867 56.33

@ Source code available at http://www.link.cs.cmu.edu/music-analysis/grouper.html. The code was
compiled and implemented in a software tool by Klaus Frieler at the University of Hamburg.
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4 Results
4.1 Aggregating participants’ responses
Strong and weak boundaries were aggregated for all subsequent analyses.

Most previous studies of melodic segmentation have aggregated the responses of
participants in some way. This often involves summing the boundary indications over
all participants (Bruderer 2008; Deliege 1998; Ferrand et al 2003; Melucci and Orio
2002; de Nooijer et al 2008) based on the assumption that perceived boundaries can
be identified at points where a majority of participants perceive a boundary. However,
this kind of participant aggregation can only be justified when there is high inter-
participant agreement. Most studies have not assessed inter-participant differences in
perceived grouping before aggregating, exceptions being Frankland and Cohen (2004)
and Melucci and Orio (2002) who found no significant inter-participant differences.
Thom et al (2001), however, found much variability in agreement between participants
for each melody (F1 ranging between 0.14 and 0.82 for phase judgments and 0.35 and 0.8
for subphrase judgments). Melodies whose phrase structure was emphasised by rests
tended to produce higher inter-participant agreement.

Here we measured inter-participant agreement using Fleiss’s x (Fleiss 1971) with a
threshold of 0.6 representing the lower bound for ‘substantial agreement’ (Landis and
Koch 1977). Agreement was above the threshold for just seven of our fifteen melodies,
so aggregation would have meant excluding more than half of the data (eight out of
fifteen melodies, 622 out of 1250 notes) from the analysis. However, subthreshold
inter-rater agreement need not imply complete disagreement between the participants,
but simply that some used different segmentation strategies from others, in response to
ambiguous stimuli. It is possible that different groups of participants perceived distinct,
equally valid, segmentations of the melodies. Such ambiguity seems likely from the
point of view of musical practice: choral and orchestral conductors frequently differ
on where to place phrasing marks, and musical scores often allow for individual
expressive performance in phrasing. It, no doubt, also reflects the fact that these are
unfamiliar melodies with no lyrics, orchestration, harmony, or expressive timing and
dynamics to guide grouping perception. Furthermore, we deliberately selected melodies
with complex grouping structure to create a challenging test for the models.

If there is genuine structural ambiguity, aggregating participants’ responses is likely to
lead to incomplete or fictitious segmentation solutions. Figure 1 illustrates this situation.
The mean number of boundaries perceived in this melody is seven. However, six bound-
aries generate high agreement while the seventh shows much lower agreement. One
interpretation is that there are different strategies for placing a seventh boundary and
that votes get split between notes 21, 36, and 68. Melodies 7 and 13 also seem to
encourage different segmentation strategies; in both cases, majority vote produces only
one boundary. Figures 2 and 3 show that there are regions (eg note numbers 4—7 in
melody 7 and note numbers 28 —31 in melody 13) where participants place boundaries
such that votes are split between neighbouring locations, complicating the selection of
boundary locations.

One solution would be to use a wider time window for summing votes (Spiro
20006), but, in the case of genuine ambiguity, this would only exacerbate the problem.

®) The overall number of boundaries reported was consistent across participants (a mean ratio of
0.11 boundaries to nonboundaries over all melodies and participants; SEM = 0.007; SD = 0.033).
However, preliminary analysis of the results revealed differences between participants in the way
strong and weak boundaries were perceived or reported: the variance of the ratio of strong to
weak boundaries was quite high (mean ratio = 0.47; SEM = 0.06; SD = 0.32). Therefore, since both
weak and strong boundaries indicate the end of a group, and since there was good agreement on
boundary locations (see section 4.1), the two categories were aggregated into one, and the analysis
carried out on the basis of boundary location, regardless of boundary strength.



1380 M T Pearce, D Mullensiefen, G A Wiggins

—_ —_ o
w (=3 w S
I I I I

Number of participants indicating boundary
=)
Il

0 20 40 60 80
Note number in melody 1

Figure 1. The sum of participants’ boundary indications for each note in melody 1.
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Figure 2. The sum of participants’ boundary indications for each note in melody 7.
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Figure 3. The sum of participants’ boundary indications for each note in melody 13.
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Another approach, adopted by Thom et al (2002), is to compute the performance of
each model for each participant and then average over all participants. Again, however,
this makes the averaged performance value dependent on the relative number of
participants who used a segmentation strategy similar to that of the model. Consider
an extreme example in which an equal number of participants chose either of two valid
but nonoverlapping segmentation strategies with the same number of boundaries (ie all
boundaries are in different places). A model that follows one of these strategies per-
fectly would only achieve 50% accuracy. A second model that outputs the union of
the set of boundaries from the two strategies (producing twice as many boundaries
than any of the participants) will also achieve 50% performance accuracy in spite of
being clearly incorrect.

As a result of these considerations, we address our low inter-participant agreement
by explicitly investigating the possibility that each melody admits multiple segmentation
solutions, each of which is musically and perceptually valid.

4.2 Clustering participants with similar strategies

Melucci and Orio (2002) noted a certain amount of disagreement between the segmenta-
tion markings of their participants. However, as they did not observe clear distinctions
between participants when their responses were scaled by MDS and subjected to a cluster
analysis, they aggregated all participants’ boundary markings to binary judgments using
a probabilistic procedure. We follow a similar approach, using a clustering algorithm
to identify potential groups (clusters) of participants that exhibit similar segmentation
strategies for each melody.

First, we use hierarchical agglomerative clustering (Everitt and Dunn 2001) with a
complete linkage distance metric using the Kulczynski distance (Kulczynski 1927) between
pairs of segmentations of particular participants on particular melodies. Figure 4 shows
an example of the resulting cluster dendrogram of participants for melody 8.

Second, for each melody, we cluster participants by slicing the dendrogram hori-
zontally at a height determined by several constraints which are intended to achieve a
balance between a small number of clusters for each melody (up to five), the inclusion
of a large number of participants (at least three per cluster) and high agreement within
clusters (Kulczynski distance < 0.5 and x > 0.6).
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Figure 4. A cluster dendrogram of participants’ responses for melody 8. The dashed boxes show
the two clusters produced by slicing the dendrogram horizontally at a given height.
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Across all fifteen melodies, the cluster analysis produced 78 clusters of which we
excluded 31 on the grounds that they contained only one or two participants and a
further 6 on the grounds of low inter-participant agreement (x < 0.6), leaving a total
of 41 clusters of participants for the fifteen melodies. Table 3 gives an overview of the
clustering solutions for each melody, including the total number of clusters, the num-
ber of participants and inter-participant agreement within each cluster and the total
number of participants excluded either for being part of a small cluster or a cluster
with low agreement.

Table 3. A summary of participant clustering for each melody. The second column shows the total
number of participants who responded to each melody (not all participants completed the task for
all melodies) while the third column gives the total number of clusters generated by the cluster
analysis. The following five columns give the values of k and numbers of participants (in brackets)
for the clusters with three or more participants. Values of x above the threshold of 0.6 are
in bold to distinguish them from clusters with low inter-participant agreement. The final column
indicates the number of participants excluded for each melody, either through being in a cluster
of one or two participants or through being in a cluster with low inter-participant agreement.

Melody Total Total Clusters with three or more participants Participants
number number of number of excluded
participants clusters K Ko K3 Ky Ks

1 24 5 0.81(19) 5

2 24 3 0.87(13) 0.80 (7) 0.61 (4) 0

3 23 6 0.79 (9) 0.81 (4 0.90 (5) 0.76(3) 2

4 23 8 0.74 (6) 0.64 (5) 0.45 (3) 0.60(4) 9

5 24 6 0.81(11) 0.68 (3) 0.81 (7) 3

6 23 6 0.87(11) 0.66 (4) 0.81 (3) 5

7 22 6 0.76 (4) 0.76 (6) 0.80 (5) 0.64(3) 4

8 25 2 0.77(16) 0.78 (9) 0

9 25 3 0.75(21) 0.55 (3) 4

10 23 7 0.73 (5) 0.64(10) 0.55 (3) 8

11 25 6 0.72 (7) 0.74 (4 0.71 (7) 0.70(3) 0.70(3) 1

12 25 3 0.83(22) 3

13 25 8 0.54 (3) 0.88 (6) 0.74 (3) 0.79(7) 9

14 25 3 0.89 (7) 0.73 (5) 0.84(13) 0

15 25 6 0.57 (5) 0.63 (7) 0.68 (5) 0.60(4) 0.59(3) 9

Finally, for each cluster of participants on each melody, we generated a single
segmentation solution to represent that cluster. This was achieved by summing the
boundary indications of all participants within a cluster for each note in a melody and
using the k-means algorithm (Everitt and Dunn 2001) with k& = 2 to classify each note
in a melody as a boundary or nonboundary.

4.3 Comparative evaluation of model performance
To evaluate the cognitive models, we compare the segmentations of each model with
the segmentations of one cluster of participants for each melody. We follow a best-only
strategy where, for each melody, the cluster that matches the model’s segmentation
most closely (according to Fl) is selected (on the grounds that each model can only
represent a single cognitive segmentation strategy at a given time). Since each model’s
parameters, as chosen by its author, are held fixed, the only degree of freedom in this
comparison is the parameter k in the peak picker, which is optimised on the behavioural
data individually for each model.

The results of model comparison using the best-only approach are shown in table 4
in terms of the mean and standard deviation of the F1 values over the fifteen melodies
(mean precision and recall values are also shown for comparison). Although the combined
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Table 4. The mean performance of each model over all fifteen melodies.

Model Mean precision Mean recall Mean F1 SD FI1
Grouper 0.86 0.82 0.83 0.16
LBDM 0.79 0.81 0.78 0.11
IDyOM 0.57 0.73 0.64 0.31
GPR 2a 0.70 0.54 0.58 0.41
GPRs 0.38 0.68 0.47 0.16
GPR 2b revised 0.47 0.45 0.43 0.26
GPR 2b 0.46 0.42 0.40 0.27
PMI 0.24 0.49 0.31 0.14
TP 0.25 0.45 0.31 0.18
GPR 3a 0.26 0.43 0.30 0.15
Always 0.13 1.0 0.23 0.08
GPR 3d 0.17 0.11 0.11 0.16
Never 0.00 0.00 0.00 0.00

GPRs model correctly predicts more boundaries (higher recall) than any of its component
rules, this is outweighed in the overall F1 score by poor precision caused by the higher
number of false positives. Four models (Grouper, LBDM, IDyOM, and GPR 2a)
achieved F1 values greater than 0.5 and were selected on this basis for further analysis.

Owing to significant inhomogeneity of variance of F1 values between the four models
(Bartlett’s K*> =24.97, df =3, p < 0.01), sign-tests were used as a non-parametric
alternative to the ¢ test. The high standard deviation in F1 (and relatively low recall)
for GPR 2a probably reflect the fact that this model indicates no boundaries for melo-
dies that do not contain rests. At an o level of 0.05, two-tailed sign tests indicated
no significant differences in performance between these four models, and low effect
sizes compared to a chance model (p =0.5), except between Grouper and GPR 2a
(Grouper versus GPR 2a: Grouper’s F1 value was higher than that of GPR 2a on
twelve out of fifteen melodies, so the effect size of the sign test g =12/15— 0.5 = 0.3,
p = 0.04; Grouper versus LBDM: g = 0.17, p = 0.3; Grouper versus IDyOM: g = 0.29,
p = 0.06; LBDM versus IDyOM, g =0.21, p =0.18; LBDM versus GPR 2a: g = 0.1,
p = 0.61; GPR 2a versus IDyOM: g = 0.12, p = 0.58).

In the previous analysis, individual models could have been tested on different
clusters of participants for a given melody, corresponding with the assumption that
these models correspond with different segmentation strategies. We complement this
approach with an alternative analysis using only melodies 1 and 12, each of which has
a single cluster, meaning that all models are evaluated against the same segmenta-
tion of each melody. Note that this is a more stringent criterion of inter-participant
agreement than a threshold of Fleiss’s k > 0.6 used in section 4.1. The values of k used
in peak picking were the same as those used in the previous analysis (see section 3.4).
The results are shown in table 5 and are broadly comparable with those shown in
table 4. The same four models achieve F1 values greater than 0.5 although in this case
IDyOM outperformed LBDM, particularly in terms of recall. Grouper achieved perfect
performance on both melodies.

4.4 Combining models

The cognitive models discussed in this paper differ along several general dimensions.
For example, the GPRs, LBDM, and Grouper use rules derived from expert musical
knowledge, while DOP and TP/PMI rely on learning from musical examples. Looking in
more detail, DOP uses supervised training while TP/PMI uses unsupervised induction of
statistical regularities. Along another dimension, the GPRs, LBDM, and TP/PMI predict
phrase boundaries locally, while Grouper and DOP attempt to find the best segmentation
of an entire melody. The models also differ in terms of the musical features they use:
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Table 5. The mean performance of each model over melodies 1 and 12.

Model Mean precision Mean recall Mean F1 SD FI1
Grouper 1.0 1.0 1.0 0.0
IDyOM 0.72 0.94 0.82 0.06
LBDM 0.72 0.69 0.69 0.13
GPR 2a 1.0 0.48 0.57 0.49
GPR 2b revised 0.48 0.52 0.43 0.25
GTTM 0.34 0.54 0.42 0.31
GPR 2b 0.26 0.52 0.35 0.33
GPR 3a 0.26 0.38 0.31 0.10
PMI 0.18 0.46 0.26 0.15
Always 0.10 1 0.18 0.06
TP 0.11 0.25 0.15 0.21
GPR 3d 0.0 0.0 0.0 0.0
Never 0.0 0.0 0.0 0.0

LBDM and IDyOM use pitch, IOl and OOI; Grouper uses 10I, OOI and metrical
structure; GPR 3a and TP/PMI use pitch; GPR 2a uses I0I; GPR 2b uses OOI; and
so on. Finally, the models differ in idiosyncratic ways: IDyOM differs from TP/PMI,
for example, in using longer contexts and more sophisticated methods to estimate note
probabilities. These differences between the models suggest that most are incomplete in
some way and that they might operate best at different timescales (ie frequent but weak
low-level boundaries or strong but infrequent high-level boundaries). If this is the case,
we might be able to achieve a better fit to the behavioural data by combining the best
performing models into a weighted hybrid model.

Accordingly, logistic regression models were implemented using Grouper, LBDM,
IDyOM, and GPR 2a as predictors. Apart from Grouper, which returns binary segmenta-
tion judgments, the raw boundary strength profiles were used (ie without peak picking).
Rather than selecting the clusters on which the hybrid model performs best (as in the
previous analysis), we tested the hybrid model against two plausible segmentation
strategies. Two dependent variables were created, by selecting participant clusters for
each melody, which consisted, respectively, of a high-level phrase segmentation and a
lower-level subphrase segmentation. For each melody, we chose the cluster with most
boundaries for the low-level segmentation and the cluster with fewest boundaries for
the high-level segmentation. In the case of ties, we chose the cluster that represented
more participants and then, randomly, if ties could not be resolved in that way.

The logistic regression models are shown in tables 6 and 7 for the phrase- and
subphrase-level dependent variables, respectively. The tables indicate the fitted coef-
ficients and their standard errors (obtained by maximum-likelihood estimation) which
are used to compute a z-score for the contribution of each predictor to the model.

Table 6. Logistic regression results for the four predictors making up the hybrid model on the
phrase-level segmentation strategy.

Predictor Estimate SE z value P

(Intercept) —6.26 0.05 —120.50 <0.01
Grouper 2.56 0.05 52.51 <0.01
IDyOM 0.16 0.01 28.46 <0.01
LBDM 5.69 0.14 39.84 <0.01
GPR 2a 1.89 0.28 6.72 <0.01

Null deviance: 61395 on 1249 degrees of freedom
Residual deviance: 18939 on 1245 degrees of freedom




The role of expectation and probabilistic learning in auditory boundary perception 1385

Table 7. Logistic regression results for the four predictors making up the hybrid model on the
subphrase-level segmentation strategy.

Predictor Estimate SE z value p

(Intercept) —5.00 0.04 —132.62 <0.01
Grouper 2.63 0.04 64.12 <0.01
IDyOM 0.18 0.01 33.93 <0.01
LBDM 5.68 0.14 40.21 <0.01
GPR 2a 19.54 0.52 37.30 <0.01

Null deviance: 87601 on 1249 degrees of freedom
Residual deviance: 32664 on 1245 degrees of freedom

For both phrase and subphrase levels, all component predictors make a significant
unique contribution to the regression model, and backwards stepwise elimination using
the Bayes Information Criterion (BIC) failed to remove any of the predictors from the
overall model. Although IDyOM’s coefficient is smaller than that of the other models,
it also has a smaller standard error and makes a significant unique contribution to
the model, which is why it was retained in the stepwise elimination procedure.

In table 8 (phrase level) and table 9 (subphrase level) the performance of the hybrid
model is compared with that of Grouper. In both cases, sign tests demonstrated that
the hybrid model achieved (marginally) significantly better performance than Grouper
(phrase level: g =0.3, p =0.05; subphrase level: g =0.32, p =0.03), suggesting that
Grouper, LBDM, and IDyOM all contribute different information.

Table 8. The mean performance of the hybrid model on the phrase-level segmentation strategy
across the fifteen melodies.

Model Mean precision Mean recall Mean F1
Hybrid 0.78 0.70 0.74
Grouper 0.60 0.77 0.66

Table 9. The mean performance of the hybrid model on the subphrase-level segmentation strategy
across the fifteen melodies.

Model Mean precision Mean recall Mean FT
Hybrid 0.88 0.66 0.73
Grouper 0.77 0.62 0.66

5 Discussion

The research presented here makes three novel contributions. First, we hypothesised
a relationship between expectation and grouping in auditory perception. To test this
hypothesis, we introduced a new cognitive model of melodic segmentation (IDyOM)
derived from an existing cognitive model of pitch expectations based on unsupervised
probabilistic learning and information-theoretic prediction (Pearce and Wiggins 2006).
The segmentation model identifies segment boundaries before unexpected events in a
melodic sequence.

Second, we collected perceptual segmentations of fifteen folk and pop melodies by
twenty-five musically trained participants. Because we selected unfamiliar melodies
with complex grouping structure and presented them without lyrics, harmonic accom-
paniment, or expressive timing and dynamics, some of our stimuli admitted different
interpretations of their grouping structure leading to low inter-participant agreement.
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Rather than discarding or aggregating our data, we used clustering methods to identify
groups of participants sharing distinct segmentation strategies for each melody. Each
melody gave rise to between one and five clusters and, in general, inter-participant agree-
ment was high within clusters. In auditory research, the possibility of different participants
perceiving stimuli in different ways is often accounted for (although not explicitly
investigated) on using latent variable models (eg McAdams et al 1995). Here, by contrast,
we examine such ambiguity explicitly. Most studies of ambiguity in visual perceptual
research either look at within-participants reversals in multistable figures (eg Leopold and
Logothetis 1999) or use various factors to bias participants towards a particular interpre-
tation of an ambiguous stimulus (eg Balcetis and Dunning 2006). In language, it has been
shown that individual differences in resolving syntactic ambiguity can be related to work-
ing memory constraints (Pearlmutter and Macdonald 1995). Here we have investigated
stimuli which afford multiple perceptual interpretations in terms of grouping structure.

Third, we evaluated IDyOM in comparison with existing computational models
by examining the similarity between the segmentations of all the models and those
of the participants. We explicitly allowed for multiple interpretations by treating
each model as a possible perceived segmentation. For each melody, each model was
evaluated on the cluster of participants whose segmentation it most closely matched.
The results indicated that Grouper, LBDM, and IDyOM performed well in matching
the perceived segmentations of the participants, while GPR 2a performed less well but
much better than the other local models based on single rules. These four successful
models were entered into a logistic regression analysis to create a hybrid model that
outperformed Grouper, the best-performing model, in predicting two sets of participant
clusters designed to represent phrase and subphrase level grouping strategies. The fact
that stepwise selection failed to remove any predictors, and that the hybrid model
outperforms Grouper, indicate that the other three models complement Grouper in
accounting for different aspects of the participants’ segmentations. However, the results
(F1 values between 0.74 and 0.83) still leave room for improved fit between the segmen-
tations produced by listeners and the models.

These results are broadly comparable with those of Pearce et al (2010a) who found
that the models ranked in the same order when tested against the expert segmentations
of a musicologist on 1705 German folk songs. However, the performance of all models
was worse in that study, perhaps owing to the fact that here models were tested on the
optimal cluster of participants. Pearce et al also obtained slightly better performance
with a hybrid model containing the same component models as those reported here.
Furthermore, de Nooijer et al (2008) have recently corroborated our present findings
in a separate comparative study.

To the best of our knowledge, this is the first published comparative evaluation of
unsupervised-learning models of melodic segmentation to explicitly examine perceptual
ambiguity. IDyOM outperformed the simple unsupervised probabilistic segmentation
models (TP and PMI) and performed comparably with the best of the rule-based segmen-
tation models (Grouper and LBDM). This is encouraging, given that the underlying
model was developed to account for human pitch expectations (Pearce and Wiggins
2006); we used it to predict segmentation simply by placing boundaries before surprising
notes (the model was in no way optimised for melodic segmentation).

We argue that a learning model such as IDyOM has several other advantages
over models such as Grouper and LBDM. Unlike these models, IDyOM provides an
account of how cognitive mechanisms of expectation and grouping might be acquired
in development through interaction with the auditory environment (Bruce et al 2003;
Wiggins 2007). Furthermore, while rule-based models such as those examined here imple-
ment a very specific musical (even style-specific) cognitive function, IDyOM suggests
the possibility that the same cognitive mechanisms can be parsimoniously deployed in
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different domains, such as language and music, flexibly adapting to the structure
of the input during learning; preliminary evidence for this possibility is supplied by
Wiggins (2010). Building on experimental studies of statistical segmentation of syllable
and tone sequences by infants and adults (eg Saffran et al 1999) and computational
research on word segmentation (eg Brent 1999a; Cohen et al 2007), these results provide
further evidence that auditory grouping is influenced by expectations based on proba-
bilistic learning. Finally, we suggest that probabilistic models of perceptual processes,
such as expectation and segmentation, have a more natural neurobiological inter-
pretation than static domain-specific rules in terms of current theories of predictive
coding in neural processing of perceptual stimuli (Barlow 1959; Friston 2010; Smith
and Lewicki 2006).

The present research suggests various avenues for further investigation. In terms
of experimental method, we chose musicians as our participants on the grounds that
they would be best able to introspect reliably where they perceive boundaries. In this
way, we hoped to reduce noise in our data, although it remains to be seen whether
these results generalise to individuals without particular musical skills (although note
that we only asked our participants where they perceived boundaries not how they
perceived them). We followed Deli¢ge (1987) in asking our participants to indicate musi-
cal boundaries in writing, on a visual representation of the musical notes, although unlike
Delicge, we used a score as our participants were musical. Given the possibility that the
visuo-spatial representation of music could have influenced the participants’ segmenta-
tions, this method should be compared to others where boundaries are indicated with
a mouse click (eg Frankland and Cohen 2004) in future research.

Another general recommendation for future research would be to focus on the
boundaries not indicated by rests, which seem to be the most reliable indicators
of boundaries. The greater ambiguity in perceived segmentation that this will almost
certainly produce could be handled by the clustering approach presented here. Future
research should also examine the factors that bias a given listener towards a particular
grouping of a particular melody. We have assumed here that a segmentation strategy
is determined by the interaction between a particular listener and a particular melody
(ie there is no reason why the same listener should adopt the same strategy for all songs).
It remains to be seen how stable segmentation strategies are across time and different
classes of stimuli. Are there demographic factors, skills, experiences, or personality
traits on the one hand, and aspects of musical structure on the other, that determine
the selection of a particular segmentation strategy? Our approach could also usefully
be developed and applied to other areas where genuine ambiguity in perception of the
stimuli presents a challenge to traditional methods of analysis.

The results provide evidence that perceptual segmentation may be based on unsuper-
vised probabilistic learning of expectations, so further developments of the learning-based
approach to segmentation are worth pursuing. One option would be to explore other
kinds of learning model, in particular alternatives to local probabilistic segmenta-
tion in the form of explicit Bayesian models of boundary identification (Brent 1999a;
Goldwater 2007). We prefer an unsupervised approach to segmentation to a supervised
approach (eg Bod 2001) given the lack of evidence that segmentation boundaries are
explicitly marked in the environment (both musical and linguistic). However, it would
be worthwhile examining in more detail the effect of additional information, such
as expressive timing, on learning to detect phrase boundaries in music. In human
development, early exposure to this information might take place via social, expressive,
or linguistic cues in infant-directed singing and be used to learn melodic formulae
that could subsequently be used to segment music without the explicit cues. This mech-
anism could be tested with the IDyOM model, by simulating an infant who learns
to associate pitch patterns with natural boundaries (eg the end of a melody or a long



1388 M T Pearce, D Mullensiefen, G A Wiggins

pause). In a training phase, the model would learn to predict natural boundaries
on the basis of the preceding pitch patterns and would subsequently be tested on its
ability to predict perceptual boundaries not associated with natural temporal markers.
It should be noted, however, that pre-linguistic infants can perceive phrase boundaries
in music (Jusczyk and Krumhansl 1993) and can do so on the basis of pitch statistics
alone (Saffran et al 1999).

More generally, it will be interesting to investigate developmental trends in bound-
ary perception and whether these can be modelled by IDyOM’s changes of behaviour
with increasing exposure to music. It is quite possible that the small training set used
here does not approximate the experience of a trained adult listener and that further
improvements in performance could be obtained by increasing the size of the training
set (or tailoring it to the experience of particular individuals).

It will also be useful to examine ways of tailoring IDyOM specifically for segmen-
tation, including a metrically-based rather than an event-based representation of time,
optimising the derived features that it uses to make event predictions, and using other
information-theoretic measures such as entropy or predictive information (Abdallah
and Plumbley 2009). One of the attractive features of the model is that such measures
(and the learning models on which they rely) are in no sense domain-specific and so
can be applied generally. A promising avenue for future research will involve applying
the approach to other cognitive domains (eg language, memory, vision) to examine its
validity as a general cognitive model of segmentation. There is evidence, for example,
that probabilistically surprising events attract visual attention (Itti and Baldi 2006)
suggesting the possibility that these events may provide markers for the cognitive
segmentation of visual scenes.
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Appendix: The melodies

Details of the fifteen melodies presented to the participants for segmentation are shown
in table Al. Melodies 3, 7, and 10 were taken from the entries identified by E0356, K0059
and K0690, respectively, in the Essen Folk Song Collection (Schaffrath 1995).

Table Al. Details of the fifteen melodies used in the experiment.

Number Title Artist Genre Tempo Time sig. Length
1 Children of the night Richard Marx Pop 75 4/4 81
2 Longer Dan Fogelberg Pop 80 4/4 70
3 Ihr Franzosen geht nach unattributed/trad Folk 100 2/4 51

Haus
4 Ich wiinsch mir was J Ziegner Pop 95 4/4 130
5 Enjoy your life Funky Be HipHop 85 4/4 129
6 Freiheit M Witte Rock/Pop 120 4/4 75
7 Pripe Ninne Sause unattributed/trad  Folk 80 2/4 42
8 Hand in hand H Hofbauer Ballad 80 4/4 113
9 Please stay H Hofbauer Ballad 90 4/4 87

10 Ruru Rinneken unattributed/trad  Folk 85 2/4 48

11 Let me be your only one Funky Be HipHop 100 4/4 106
12 Will you go, Lassie F McPeake/trad  Folk 120 4/4 62

13 Deus Sugarcubes Rock 120 4/4 39
14 Here, there, and The Beatles Rock 120 4/4 86

everywhere

15 Deep in my dreams M Robenack Rock 120 4/4 131

p © 2010 a Pion publication



ISSN 0301-0066 (print) ISSN 1468-4233 (electronic)

PERCEPTION

VOLUME 39 2010

www.perceptionweb.com

Conditions of use. This article may be downloaded from the Perception website for personal research
by members of subscribing organisations. Authors are entitled to distribute their own article (in printed
form or by e-mail) to up to 50 people. This PDF may not be placed on any website (or other online
distribution system) without permission of the publisher.



	Abstract
	1 Introduction
	2 Background
	2.1 Theoretical approaches
	2.2 Experimental paradigms and results
	2.3 Cognitive models
	2.4 The IDyOM model
	2.5 Peak picking

	3 Method
	3.1 Participants
	3.2 Stimulus materials
	3.3 Procedure
	3.4 Model implementations

	4 Results
	4.1 Aggregating participants' responses
	4.2 Clustering participants with similar strategies
	4.3 Comparative evaluation of model performance
	4.4 Combining models

	5 Discussion
	Acknowledgments
	References
	CrossRef-enabled references

	Appendix: The melodies

