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Abstract
We present a method for the evaluation of creative sys-
tems. We deploy a learning-based perceptual model
of musical melodic listening in the generation of tonal
melodies and evaluate its output quantitatively and objec-
tively, using human judges. Then we show how the sys-
tem can be enhanced by the application of mathematical
methods over data supplied by the judges. The outcome
to some extent addresses the criticisms of the experts. We
suggest that this is a first step on the road to autonomously
learning, introspective, creative systems.

1 Introduction
We examine, at the computational level, the demands
of the melodic composition task, focusing on constraints
placed on the representational primitives and the expres-
sive power of the composition system. We use three
multiple-feature Markov models trained on a corpus of
chorale melodies to generate novel pitch structures for
seven existing chorale melodies. We propose null hy-
potheses that each model is consistently capable of gen-
erating chorale melodies that are rated as equally success-
ful examples of the style as the original chorale melodies
in our dataset. To examine the hypotheses, experienced
judges rated the generated melodies together with the
original chorale melodies, using a variant of the Consen-
sual Assessment Technique (Amabile, 1996) for inves-
tigating psychological components of human creativity.
The results warrant rejection of the null hypothesis for all
three of the systems. Even so, further analysis identifies
some objective features of the chorale melodies that ex-
hibit significant relationships with the ratings of stylistic
success, suggesting how the computational models fail to
meet intrinsic stylistic constraints of the genre. Adding
new features to address these concerns significantly im-
proves our systems’ prediction performance.
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We present our experiment and the evaluation method,
which, we suggest, forms a basis for systems capable of
introspection based on feedback on their output.

2 Background
2.1 Music Generation from Statistical Models

Conklin (2003) examines four methods of generating
high-probability music according to a statistical model.
The simplest is sequential random sampling: an event is
sampled from the estimated event distribution at each se-
quential position up to a given length. Events are gener-
ated in a random walk, so there is a danger of straying into
local minima in the space of possible compositions. Even
so, most statistical generation of music uses this method.

The Hidden Markov Model (HMM) addresses these
problems; it generates observed events from hidden states
(Rabiner, 1989). An HMM is trained by adjusting the
probabilities conditioning the initial hidden state, the tran-
sitions between hidden states and the emission of ob-
served events from hidden states, so as to maximise the
probability of a training set of observed sequences. A
trained HMM can be used to estimate the probability of an
observed sequence of events and to find the most probable
sequence of hidden states given an observed sequence of
events. This can be achieved efficiently for a first-order
HMM using the Viterbi algorithm; a similar algorithm
exists for first-order (visible) Markov models. However,
Viterbi’s time complexity is exponential in the context
length of the underlying Markov model (Conklin, 2003).

Tractable methods for sampling from complex sta-
tistical models (such as those presented here) which ad-
dress the limitations of random sampling do exist, how-
ever (Conklin, 2003). The Metropolis-Hastings algo-
rithm is a Markov Chain Monte Carlo (MCMC) sampling
method (MacKay, 1998). The following description ap-
plies it within our generation framework. Given a trained
multiple-feature model m for some basic feature τb, in or-
der to sample from the target distribution pm(s ∈ [τb]∗),
the algorithm constructs a Markov chain in the space of
possible feature sequences [τb]∗ as follows:

1. number of iterations N ← a large value; iteration
number k ← 0; initial state s0 ← some feature se-
quence t

j
1 ∈ [τb]∗ of length j;

2. select event index 1 ≤ i ≤ j at random or based on



some ordering of the indices;
3. let s

�
k be the sequence obtained by replacing event ti

at index i of sk with a new event t
�
i sampled from a

distribution q which may depend on the current state
sk – in the present context, an obvious choice for q

would be {pm(t|ti−1
1 )}t∈[τb];

4. accept the proposed sequence with probability

min
�
1,

pm(s�k ) · q(ti)
pm(sk) · q(t�i)

�
;

5. if accepted, sk+1 ← s
�
k, else sk+1 ← sk;

6. if k < N , k++ and iterate from 2, else return sk.

If N is large enough, the resulting event sequence
sN−1 is guaranteed to be an unbiased sample from the tar-
get distribution pm([τb]∗). However, there is no method of
assessing the convergence of MCMCs nor of estimating
the number of iterations required to obtain an unbiased
sample (MacKay, 1998). Because these sampling algo-
rithms explore the state space using a random walk, they
can still be trapped in local minima.

Event-wise substitution is unlikely to provide a sat-
isfactory model of phrase- or motif-level structure. Our
model has a short-term component, to model intra-opus
structure, but generation still relies on single-event sub-
stitutions. Pattern-discovery algorithms may be used to
reveal phrase level structure, which may subsequently be
preserved during stochastic sampling (Conklin, 2003).

2.2 Evaluating Computer Models of Composition

Analysis by synthesis evaluates computational models of
composition by generating pieces and evaluating them
with respect to the objectives of the implemented model.
The method has a long history; Ames and Domino (1992)
argue that a primary advantage of computational analysis
of musical style is the ability to evaluate new pieces gen-
erated from an implemented theory. However, evaluation
of the generated music raises methodological issues which
have typically compromised the potential benefits thus af-
forded (Pearce et al., 2002). Often, compositions are eval-
uated with a single subjective comment, e.g.,: “[the com-
positions] are realistic enough that an unknowing listener
cannot discern their artificial origin” (Ames and Domino,
1992, p. 186). This lack of precision makes it hard to
compare theories intersubjectively.

Other research has used expert stylistic analyses to
evaluate computer compositions. This is possible when
a computational model is developed to account for some
reasonably well-defined stylistic competence or accord-
ing to critical criteria derived from music theory or music
psychology. For example, Ponsford et al. (1999) gave an
informal stylistic appraisal of the harmonic progressions
generated by their n-gram models.

However, even when stylistic analyses are under-
taken by groups of experts, the results obtained are typ-
ically still qualitative. For fully intersubjective analy-
sis by synthesis, the evaluation of the generated com-
positions must be empirical. One could use an adapta-
tion of the Turing test, where subjects are presented with

pairs of compositions (one computer-generated, the other
human-composed) and asked which they believe to be the
computer-generated one (Marsden, 2000). Musical Tur-
ing tests yield empirical, quantitative results which may
be appraised intersubjectively. They have demonstrated
the inability of subjects to distinguish reliably between
computer- and human-composed music. But the method
can be biased by preconceptions about computer music,
allows ill-informed judgements, and fails to examine the
criteria being used to judge the compositions.

2.3 Evaluating Human Composition

Amabile (1996) proposes a conceptual definition of cre-
ativity in terms of processes resulting in novel, appropri-
ate solutions to heuristic, open-ended or ill-defined tasks.
However, while agreeing that creativity can only be as-
sessed through subjective assessments of products, she
criticises the use of a priori theoretical definitions of cre-
ativity in rating schemes and failure to distinguish creativ-
ity from other constructs. While a conceptual definition
is important for guiding empirical research, a clear opera-
tional definition is necessary for the development of use-
ful empirical methods of assessment. Accordingly, she
presents a consensual definition of creativity in which a
product is deemed creative to the extent that observers
who are familiar with the relevant domain independently
agree that it is creative. To the extent that this construct
is internally consistent (independent judges agree in their
ratings of creativity), one can empirically examine the ob-
jective or subjective features of creative products which
contribute to their perceived creativity.

Amabile (1996) used this operational definition to de-
velop the consensual assessment technique (CAT), an em-
pirical method for evaluating creativity. Its requirements
are that the task be open-ended enough to permit consid-
erable flexibility and novelty in the response, which must
be an observable product which can be rated by judges.
Regarding the procedure, the judges must:

1. be experienced in the relevant domain;
2. make independent assessments;
3. assess other aspects of the products such as technical

accomplishment, aesthetic appeal or originality;
4. make relative judgements of each product in relation

to the rest of the stimuli;
5. be presented with stimuli and provide ratings in or-

ders randomised differently for each judge.

Most importantly, in analysing the collected data, the
inter-judge reliability of the subjective rating scales must
be determined. If—and only if—reliability is high, we
may correlate creativity ratings with other objective or
subjective features of creative products.

Numerous studies of verbal, artistic and problem solv-
ing creativity have demonstrated the ability of the CAT
to obtain reliable subjective assessments of creativity in a
range of domains (Amabile, 1996, ch. 3, gives a review).

The CAT overcomes the limitations of the Turing test
in evaluating computational models of musical composi-
tion. First, it requires the use of judges expert in the task



System Features H
A Pitch 2.337
B Int1stInPiece, ScaleDegree

⊗DurRatio,
Thread1stInPhrase

2.163

C Interval⊗Duration, ScaleDegree
⊗Int1stInPiece,

Pitch⊗Duration,
ScaleDegree⊗1stInBar,
ThreadTactus,
ScaleDegree⊗Duration,
Interval⊗DurRatio,
Int1stInPiece,
Thread1stInPhrase

1.953

Table 1: The component features of Systems A, B and
C and their average information content computed by 10-
fold cross-validation over the dataset.

domain. Second, since it has been developed for research
on human creativity, no mention is made of the computa-
tional origins of the stimuli; this avoids bias due to pre-
conceptions. Third, and most importantly, the methodol-
ogy allows more detailed examination of the objective and
subjective dimensions of the creative products. Crucially,
the objective attributes of the products may include fea-
tures of the generative models (corresponding with cogni-
tive or stylistic hypotheses) which produced them. Thus,
we can empirically compare different musicological the-
ories of a given style or hypotheses about the cognitive
processes involved in composing in that style.

3 The Experiment
3.1 Introduction

Following Johnson-Laird (1991), we analyse the compu-
tational constraints of the melody composition task in two
ways: first, examining whether our learned finite context
grammars can compose stylistically-successful melodies
or whether more expressive grammars are needed; and
second, determining which representational structures are
needed for the composition of successful melodies.

Our experiment is designed to test the hypothesis that
our statistical models are capable of generating melodies
which are deemed stylistically successful in the context of
a specified tradition. Three multiple-feature Markov mod-
els (Pearce, 2005) trained on a dataset of chorale melodies
were used to generate melodies which were then empiri-
cally evaluated: System A is a single-feature system; Sys-
tem B is a multiple-feature system developed through for-
ward, stepwise feature selection to provide the closest fit
to the human expectancy judgements obtained by Man-
zara et al. (1992); and System C is a multiple-feature sys-
tem developed through forward, stepwise feature selection
to yield the best prediction performance over the chorale
dataset. The Systems were parameterised optimally and
differ only in the features they use (Table 1).

Our work differs in several ways from extant statisti-
cal modelling for music generation, in particular, in that
no symbolic constraints were imposed on the generation
process—it was based entirely on the learned models.
This focuses the analysis more sharply on the inherent ca-
pacities of statistical finite context grammars, since our
goal was to examine the synthetic capabilities of purely

statistical, data-driven models of melodic structure.
Our strategy improves on previous work in several

ways. The variable order selection policy of PPM*
(Cleary and Teahan, 1997) is used to address concerns
that low, fixed order models tend to generate features un-
characteristic of the target style (Ponsford et al., 1999).
Other model parameters are optimised to improve predic-
tion performance over a range of different melodic styles.
Systems B and C operate over rich representational spaces
supplied by the multiple-feature framework; their fea-
tures were selected on the basis of objective and empir-
ical criteria (cf. Conklin and Witten, 1995). Our Systems
use a novel model combination strategy, which improves
prediction performance over the chorale dataset (Pearce,
2005). While most previous approaches used sequential
random sampling to generate music from statistical mod-
els, in the present research melodies were generated using
Metropolis sampling. We expect that this method will be
capable of generating melodies which are more represen-
tative of the inherent capacities of the Systems. We do
not propose Metropolis sampling as a cognitive model of
melodic composition, but use it merely as a means of gen-
erating melodies which reflect the internal state of knowl-
edge and capacities of the trained models.

Finally, to evaluate the systems as computational mod-
els of melodic composition, we developed a method based
on the CAT. The method, described fully by Pearce
(2005), obtains ratings by expert judges of the stylistic
success of computer generated compositions and existing
compositions in the target genre. The empirical nature of
this method makes it preferable to the exclusively quali-
tative analyses typically adopted and we expect it to yield
more revealing results than the Turing test methodology.

3.2 Hypotheses

We use three different Systems to examine which repre-
sentational structures are needed for competent melody
generation. Our null hypotheses are that each System can
generate melodies rated as equally stylistically successful
in the target style as existing, human-composed melodies.
We expect the null hypothesis for the simplistic System A
to be refuted.

For System B, Baroni’s (1999) proposal that compo-
sition and listening involve equivalent grammatical struc-
tures is relevant. If the representational structures under-
lying perception and composition of music are similar,
we would expect grammars which model perceptual pro-
cesses well to generate satisfactory compositions. Since
System B represents a satisfactory model of the percep-
tion of pitch structure in the chorale genre, we may expect
to retain the null hypothesis for this system.

Pearce and Wiggins (2006) demonstrate a relation-
ship between prediction performance and fit to hu-
man expectancy data (Manzara et al., 1992), suggesting
that human perceptual systems base their predictions on
uncertainty-reducing representational features. In terms
of model selection for music generation, highly predictive
theories of a musical style, as measured by information
content, should generate original and acceptable works in
the style (Conklin and Witten, 1995). Systems A, B and C



in turn exhibit decreasing uncertainty in predicting unseen
melodies from the dataset (Table 1). Therefore, we may
expect to retain the null hypothesis for System C.

3.3 Method

3.3.1 Judges

Our judges were 16 music researchers or students at City
University, London, Goldsmiths, University of London,
and the Royal College of Music. Five were male and
eleven female, and their age range was 20–46 years (mean
25.9, SD 6.5). They had been formally musically trained
for 2–40 years (mean 13.8, SD 9.4). Seven judges re-
ported high familiarity with the chorale genre and nine
were moderately familiar. All judges received a nominal
payment, and worked for approximately an hour.

3.3.2 Apparatus and Stimulus Materials

Our dataset is a subset of the chorale melodies placed in
the soprano voice and harmonised in four parts by J. S.
Bach. These melodies are characterised by stepwise pat-
terns of conjunct intervallic motion and simple, uniform
rhythmic and metric structure. Phrase structure is explic-
itly notated. Most phrases begin on the tonic, mediant
or dominant and end on the tonic or dominant; the final
phrase almost always ends with a cadence to the tonic.

Our stimuli were as follows. Seven existing base
melodies were randomly selected from the set of chorales
in the midrange of the distribution of average informa-
tion content (cross-entropy) values computed by System
A. All 7 were in common time; 6 were in major keys and
1 was minor; they were 8–14 bars (mean 11.14) and 33–
57 events (mean 43.43) long. The base melodies were
removed from the training dataset.

7 novel melodies were generated by each System, via
5000 iterations of Metropolis sampling using the 7 base
chorales as initial states. Only pitch was sampled: time
and key signatures and rhythmic and phrase structure were
left unchanged. Figure 1 shows one base chorale melody
and the three melodies generated using it; Pearce (2005)
gives further examples.

Each melody was stored as a quantised MIDI file. A
pattern of velocity accents was added to emphasise the
metrical structure and a one-beat rest was inserted after
each fermata to disambiguate the phrase structure. The
stimuli were recorded to CD-quality audio files on a PC
using the piano tone of a Roland XP10 synthesiser con-
nected via MIDI to a Terratec EWS88 MT soundcard, at
a uniform 90 beats per minute. They were presented over
Technics RP-F290 stereo headphones fed from a laptop
PC running a software media player. The judges recorded
their responses in writing in a response booklet.

3.3.3 Procedure

Our judges supplied their responses individually and re-
ceived instructions verbally and in writing. We told them
they would hear a series of chorale melodies in the style
of Lutheran hymns and asked them to listen to each entire
melody before answering two questions about it by plac-
ing circles on discrete scales in the response booklet. The

J. S. Bach: Jesu, meiner Seelen Wonne (BWV 359)
chor106-original

System A: Jesu, meiner Seelen Wonne
chor106-cpitch-metro5000

System B: Jesu, meiner Seelen Wonne
chor106-perceptual-metro5000

System C: Jesu, meiner Seelen Wonne
chor106-compositional-metro5000

Figure 1: An example of one base chorale melody and the
three melodies generated using it.

first question1 was, “How successful is the composition
as a chorale melody?” Judges were advised that their an-
swers should reflect such factors as conformity to impor-
tant stylistic features, tonal organisation, melodic shape
and interval structure; and melodic form. Answers to this
question were given on a seven-point numerical scale, 1–
7, with anchors marked low (1), medium (4) and high (7).
To promote an analytic approach to the task, judges were
asked to briefly justify their responses to the first ques-
tion. The second question was, “Do you recognise the
melody?” Judges were advised to answer “yes” only if
they could specifically identify the composition as one
they were familiar with.

We explained to the judges that after both questions
had been answered for a melody, they could listen to the
next one by pressing a single key on the PC. We asked
them to bear in mind that their task was to rate the com-
position of each melody rather than the performance and
urged them to use the full range of the scales, reserving 1
and 7 for extreme cases. There were no constraints on the
time taken to answer the questions.

The experiment began with a practice session during
which judges heard two melodies from the same genre
(but not one of those in the test set). These practice trials
were intended to set a judgemental standard for the sub-
sequent test session. This departs from the CAT, which
encourages judges to rate each stimulus in relation to the
others by experiencing all stimuli before making their rat-
ings. However, here, we intended the judges to use their
expertise to rate the stimuli against an absolute standard:
the body of existing chorale melodies. Judges responded

1This is a variant on the original CAT, whose primary judge-
ment was about creativity. We justify this on the grounds that
stylistic success is a directly comparable kind of property.



as described above for both of the items in the practice
block. The experimenter remained in the room for the du-
ration of the practice session after which the judges were
given an opportunity to ask any further questions; he then
left the room before the start of the test session.

In the test session, the 28 melodies were presented to
the judges, who responded to the questions. The melodies
were presented in random order subject to the constraints
that no melody generated by the same system nor based on
the same chorale were presented sequentially. A reverse
counterbalanced design was used, with eight of the judges
listening to the melodies in one such order and the other
eight listening to them in the reverse order.

After the test session, the judges filled out a question-
naire detailing their age, sex, number of years of music
training (instrument and theory) and familiarity with the
chorales harmonised by J. S. Bach (high/medium/low).

3.4 Results

3.4.1 Inter-judge Consistency

We report analyses of the 28 melodies from our test ses-
sion: we discarded the data from the practice block. First,
we examine the consistency of the judges’ ratings.

All but two of the 120 pairwise correlations between
judges were significant at p < 0.05 with a mean coeffi-
cient of r(26) = 0.65 (p < 0.01). Since there was no
apparent reason to reject the judges involved in the two
non-significant correlations, we did not do so. This high
consistency warrants averaging the ratings for each stim-
ulus across individual judges in subsequent analyses.

3.4.2 Presentation Order and Prior Familiarity

Two factors which might influence the judges’ ratings are
the order of presentation of the stimuli and prior familiar-
ity. The correlation between the mean success ratings for
judges in the two groups was r(26) = 0.91, p < 0.01 in-
dicating a high degree of consistency across the two orders
of presentation, and warranting the averaging of responses
across the two groups; and, although the mean success rat-
ings tended to be slightly higher when judges recognised
the stimulus, a paired t test revealed no significant differ-
ence: t(6) = 2.07, p = 0.08.

3.4.3 Influence of Generative System and Base Chorale

Now we examine the primary question: the influence of
generative system on the ratings of stylistic success. The
mean success ratings for each stimulus are shown in Ta-
ble 2. The mean ratings suggest that the original chorale
melodies were rated higher than the computer-generated
melodies while the ratings for the latter show an influ-
ence of base chorale but not of generative system. Melody
C249 is an exception, attracting high average ratings of
success. Our preferred analysis would have been a multi-
variate ANOVA using within-subjects factors for genera-
tive system with 4 levels (Original, System A, B, C) and
base chorale with 7 levels (249, 238, 365, 264, 44, 153
and 147) with the null hypotheses of no main or interac-
tion effects of generative system or base chorale. How-
ever, Levene’s test revealed significant non-homogeneity
of variance with respect to the factor for generative system

Base System A System B System C Original Mean
249 2.56 2.44 5.00 6.44 4.11
238 3.31 2.94 3.19 5.31 3.69
365 2.69 1.69 2.50 6.25 3.28
264 1.75 2.00 2.38 6.00 3.03
44 4.25 4.38 4.00 6.12 4.69
141 3.38 2.12 3.19 5.50 3.55
147 2.38 1.88 1.94 6.50 3.17

Mean 2.90 2.49 3.17 6.02 3.65

Table 2: The mean success ratings for each stimulus and
means aggregated by generative system and base chorale.

Statistic System A System B System C Original
Median 2.86 2.57 3.07 5.93
Q1 2.68 2.25 2.68 5.86
Q3 3.29 2.75 3.61 6.29
IQR 0.61 0.50 0.93 0.43

Table 3: The median, quartiles and inter-quartile range of
the mean success ratings for each generative system.

F (3) = 6.58, p < 0.01, so ANOVA was not applicable.
Therefore, we used Friedman’s rank sum tests, as a non-
parametric alternative; this does not allow examination of
interactions between the two factors.

We examined the influence of generative system in
an unreplicated complete blocked design using the mean
success ratings aggregated for each subject and genera-
tive system across the individual base chorales. Summary
statistics for this data are shown in Table 3. The Fried-
man test revealed a significant within-subject effect of
generative system on the mean success ratings: χ

2(3) =
33.4, p < 0.01. We compared the factor levels pairwise
using Wilcoxon rank sum tests with Holm’s Bonferroni
correction for multiple comparisons: the ratings for the
original chorale melodies differ significantly from the rat-
ings of melodies generated by all three computational sys-
tems (p < 0.01). Furthermore, the mean success ratings
for the melodies generated by System B were found to be
significantly different from those of the melodies gener-
ated by Systems A and C (p < 0.03). These results sug-
gest that none of the systems is capable of consistently
generating chorale melodies which are rated as equally
stylistically successful as those in the dataset and that Sys-
tem B performed especially poorly.

4 Learning from Qualitative Feedback
4.1 Objective Features of the Chorales

Next, we aim to explain how the Systems lack composi-
tionally, by examining which objective musical features
of the stimuli the judges used in making their ratings of
stylistic success. This could explain how the systems are
lacking compositionally. To achieve this, we analysed the
stimuli qualitatively and developed a set of corresponding
objective descriptors, which we then applied in a series of
multiple regression analyses using the rating scheme, av-
eraged across stimuli, as a dependent variable. We now
present the descriptive variables, their quantitative coding
and the analysis results.

The chorales generated by our systems are mostly



not very stylistically characteristic of the dataset, espe-
cially in higher-level form. From the judges’ qualitative
comments, we identified stylistic constraints describing
the stimuli and distinguishing the original melodies. We
grouped them into five categories—pitch range; melodic
structure; tonal structure; phrase structure; and rhythmic
structure—each covered by a predictor variable.

Pitch Range The dataset melodies span a pitch range
of about an octave above and below C5, favouring the
centre of this range. The generated melodies are con-
strained to this range, but some tend towards extreme tes-
situra. We developed a predictor variable pitch centre to
capture this difference, reflecting the absolute distance, in
semitones, of the mean pitch of a melody from the mean
pitch of the dataset (von Hippel, 2000). Another issue
is the overall pitch range of the generated chorales. The
dataset melodies span an average range of 11.8 semitones.
By contrast, several of the generated melodies span pitch
ranges of 16 or 17 semitones, with a mean pitch range of
13.9 semitones; others have a rather narrow pitch range.
We captured these qualitative considerations in a quantita-
tive predictor variable pitch range, representing the abso-
lute distance, in semitones, of the pitch range of a melody
from the mean pitch range of the dataset.

Melodic Structure There are several ways in which the
generated melodies do not consistently reproduce salient
melodic features of the original chorales. The most ob-
vious is a failure to maintain a stepwise pattern of move-
ment. While some generated melodies are relatively co-
herent, others contain stylistically uncharacteristic leaps
of an octave or more. Of 9042 intervals in the dataset
melodies, only 57 exceed a perfect fifth and none exceeds
an octave. To capture these deviations, we created a quan-
titative predictor variable called interval size, representing
the number of intervals greater than a perfect octave in a
melody. The generated chorales also contain uncharac-
teristic discords such as tritones or sevenths. Only 8 of
the 9042 intervals in the dataset are tritones or sevenths
(or their enharmonic equivalents). To capture these devia-
tions, we created a quantitative predictor variable interval
dissonance, representing the number of dissonant inter-
vals greater than a perfect fourth in a melody.

Tonal Structure Since System A operates exclusively
over representations of pitch, it is not surprising that most
of its melodies fail to establish a key note and exhibit lit-
tle tonal structure. However, we might expect Systems B
and C to do better. While the comments of the judges sug-
gest otherwsie, they may have arrived at a tonal interpreta-
tion at odds with the intended key of the base chorale. To
independently estimate the perceived tonality of the test
melodies, Krumhansl’s (1990) key-finding algorithm, us-
ing the revised key profiles of Temperley (1999) was ap-
plied to each of the stimuli. The algorithm assigns the
correct keys to all seven original chorale melodies. While
the suggested keys of the melodies generated by System
A confirm that it does not consider tonal constraints, the
melodies generated by Systems B and C retain the key of
their base chorale in two and five cases respectively. Fur-
thermore, especially in the case of System C, deviations

from the base chorale key tend to be to related keys (ei-
ther in the circle of fifths or through relative and parallel
major/minor relationships). This suggests some success
on the part of the more sophisticated systems in retaining
the tonal characteristics of the base chorales.

Nonetheless, the generated melodies are often unac-
ceptably chromatic, which obscures the tonality. There-
fore, we developed a quantitative predictor called chro-
maticism, representing the number of chromatic tones in
the algorithm’s suggested key.

Phrase Structure The generated chorales typically fail
to reproduce the implied harmonic rhythm of the origi-
nals and its characteristically strong relationship to phrase
structure. In particular, while some of the generated
melodies close on the tonic, many fail to imply stylis-
tically satisfactory harmonic closure. To capture such
effects, we created a variable called harmonic closure,
which is 0 if a melody closes on the tonic of the key as-
signed by the algorithm and 1 otherwise. Secondly, the
generated melodies frequently fail to respect thematic rep-
etition and development of melodic material embedded in
the phrase structure of the chorales. However, these kinds
of repetition and development of melodic material are not
represented in the present model. Instead, as a simple indi-
cator of complexity in phrase structure, we created a vari-
able phrase length, which is 0 if all phrases are of equal
length and 1 otherwise.

Rhythmic Structure Although the chorale melodies in
the dataset tend to be rhythmically simple, the judges’
comments revealed that they were taking account of rhyth-
mic structure. Therefore, we adapted three further quanti-
tative predictors modelling rhythmic features from Eerola
and North’s (2000) expectancy-based model of melodic
complexity. Rhythmic density is the mean number of
events per tactus beat. Rhythmic variability is the degree
of change in note duration (i.e., the standard deviation of
the log of the event durations) in a melody. Syncopation
estimates the degree of syncopation by assigning notes a
strength in a metric hierarchy and averaging the strengths
of all the notes in a melody; pulses are coded such that
lower values are assigned to tones on metrically stronger
beats. All three quantities increase the difficulty of per-
ceiving or producing melodies (Eerola and North, 2000).

The mean success ratings for each stimulus were re-
gressed on the predictor variables in a multiple regres-
sion analysis. The following pairwise correlations be-
tween the predictors were significant at p < 0.05: interval
size, positively with interval dissonance (r = 0.6) and
chromaticism (r = 0.39); harmonic closure, positively
with chromaticism (r = 0.49); rhythmic variation, pos-
itively with syncopation (r = 0.61) and phrase length
(r = 0.73); and rhythmic density, positively with syn-
copation (r = 0.62) and negatively with phrase length
(r = −0.54). Because of this collinearity, in each anal-
ysis, redundant predictors were removed through back-
wards stepwise elimination using the Akaike Information
Criterion: AIC = n log(RSS/n) + 2p + c, for a regres-
sion model with p predictors and n observations, where c

is a constant and RSS is the residual sum of squares of the
model (Venables and Ripley, 2002). Since larger models



Predictor β Std. Error t p
Pitch Range −0.29 0.08 −3.57 < 0.01
Pitch Centre −0.21 0.10 −2.01 < 0.1
Interval Dissonance −0.70 0.28 −2.54 < 0.05
Chromaticism −0.27 0.03 −8.09 < 0.01
Phrase Length −0.53 0.28 −1.91 < 0.1
Overall model: R = 0.92, R

2
adj = 0.81,

F (5, 22) = 25.04, p < 0.01

Table 4: Multiple regression results for the mean success
ratings of each test melody.

Stage Feature Added H

1 Interval⊗Duration 2.214
2 ScaleDegree⊗Mode 2.006
3 ScaleDegree 1.961

⊗Int1stInPiece
4 Pitch⊗Duration 1.943
5 Thread1stInPhrase 1.933
6 ScaleDegree 1.925

⊗LastInPhrase
7 Interval⊗DurRatio 1.919
8 Interval⊗InScale 1.917
9 ScaleDegree⊗Duration 1.912

10 Int1stInPhrase 1.911

Table 5: Results of feature selection for reduced informa-
tion content over the dataset using an extended feature set.

provide better fits, this criterion balances model size, rep-
resented by p, with the fit of the model to the dependent
variable, RSS.

More positive values of the predictors indicate greater
deviation from the standards of the dataset (for pitch range
and centre) or increased melodic complexity (for the re-
maining predictors), so we expect each predictor to show a
negative relationship with the success ratings. The results
of the multiple regression analysis with the mean success
ratings as the dependent variable are shown in Table 4.
The overall model accounts for approximately 85% of the
variance in the mean success ratings. Apart from rhyth-
mic structure, at least one predictor from each category
made at least a marginally significant contribution to the
fit of the model. Coefficients of all the selected predictors
are negative as predicted. Overall, the model indicates
that the judged success of a stimulus decreases as its pitch
range and centre depart from the mean range and centre of
the dataset, with increasing numbers of dissonant intervals
and chromatic tones and if it has unequal phrase lengths.

4.2 Improving the Computational Systems

The constraints identified above mainly concern pitch
range, intervallic structure and tonal structure. It seems
likely that the confusion of relative minor and ma-
jor modes is due to the failure of any of the Sys-
tems to represent mode. To examine this hypothe-
sis, a linked feature ScaleDegree⊗Mode was added
to the feature space. Furthermore, we hypothesise
that the skewed distribution of pitch classes at phrase
beginnings and endings can be better modelled by
two linked features ScaleDegree⊗1stInPhrase
and ScaleDegree⊗LastInPhrase. On the hy-
pothesis that intervallic structure is constrained by
tonal structure, we included another linked feature
Interval⊗InScale.

System D: Jesu, meiner Seelen Wonne
chor106-compositional+-metro5000

Figure 2: Melody generated by System D, based on the
same chorale as Figure 1.

To examine whether the Systems can be improved
to respect such constraints, we added the four selected
features to the feature selection set used for System
C. We ran the same feature selection algorithm over
this extended feature space to select feature subsets
which improve prediction performance; the results are
shown in Table 5. In general, the resulting multiple-
feature System, D, shows a great deal of overlap with
System C. Just three of the nine features present in
System C were not selected for inclusion in System D:
ScaleDegree⊗1stInBar; ThreadTactus; and
Int1stInPiece. This is probably because three of
the four new features selected for inclusion in System
D, were strongly related: ScaleDegree⊗Mode;
ScaleDegree⊗LastInPhrase; and
Interval⊗InScale. The first two of these, in
particular, were selected early in the selection process;
the existing feature Int1stInPhrase was added in
the final stage. Ultimately, System D exhibits a lower
average information content (H = 1.91) than System
C (H = 1.95) in predicting unseen compositions in
the dataset. The significance of this difference was
confirmed by paired t tests over all 185 chorale melodies:
t(184) = 6.00, p < 0.01, and averaged for each 10-fold
partition of the dataset: t(9) = 12.00, p < 0.01.

4.3 A Melody Generated by System D

We now present preliminary results on System D’s capac-
ity to generate stylistically successful chorale melodies.
System D uses the features in Table 5; it exhibits signifi-
cantly lower entropy than System C in predicting unseen
melodies. We used it to generate several melodies, as de-
scribed above, with the same base melodies.

Figure 2 shows System D’s most successful melody,
based on Chorale 365. Its tonal and melodic structure are
much more coherent than System C’s melodies. Our mul-
tiple regression model, developed above to account for
the judges’ ratings of stylistic success, predicts that this
melody would receive a rating of 6.4 on a seven-point
scale of success as a chorale melody. While this result
is positive, other melodies were less successful; System D
must be analysed using our method to examine its ability
to consistently compose stylistically successful melodies.

5 Discussion and Conclusions
Our statistical finite context grammars did not meet
the computational demands of chorale melody composi-
tion, regardless of the representational primitives used.
Since we attempted to address the limitations of previous
context-modelling approaches to generating music, we



might conclude that more powerful grammars are needed
for this task. However, other approaches are possible.
Further analysis of the capacities of finite context mod-
elling systems may prove fruitful: future research should
use the methodology developed here to analyse System D,
and identify and correct its weaknesses. The MCMC gen-
eration algorithm may be responsible for failure, rather
than the limitation of the models to finite context repre-
sentations of melodic structure: more structured genera-
tion strategies, such as pattern-based sampling techniques,
may be able to conserve phrase-level regularity and repe-
tition in ways that our Systems were not.

Our evaluation method also warrants discussion. The
adapted CAT yielded insightful results for ratings of
stylistic success even though the judges were encouraged
to rate the stimuli according to an absolute standard (cf.
Amabile, 1996). However, the results suggest possible
improvements: first, avoid any possibility of method arte-
facts by randomising the presentation order of both test
and practice items for each judge and also the order in
which rating scales are presented; second, the judges’
comments sometimes reflected aesthetic judgements, so
they should also give ratings of aesthetic appeal, to delin-
eate subjective dimensions of the product domain in the
assessment (Amabile, 1996); and third, though influence
of prior familiarity with the test items was ambiguous,
bias resulting from recognition should be avoided.

Our results suggest that the task of composing a stylis-
tically successful chorale melody presents significant
challenges as a first step in modelling cognitive processes
in composition. Nonetheless, our evaluation method
proved fruitful in examining the generated melodies in
the context of existing pieces in the style. It facilitated
empirical examination of specific hypotheses about the
models through detailed comparison of the generated and
original melodies on several dimensions. It also per-
mitted examination of objective features of the melodies
which influenced the ratings and subsequent identifica-
tion of weaknesses in the Systems and directions for im-
proving them. This practically demonstrates the utility of
analysis by synthesis for evaluating cognitive models of
composition—if it is combined with an empirical method-
ology for evaluation such as that developed here.
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