
Chapter 1:

Distributed Systems:

What is a distributed system?

Fall 2012

Sini Ruohomaa

(Slides joint work with Jussi Kangasharju et al.

Figures from course material)

Chapter Outline

 Defining distributed system

 Examples of distributed systems

 Why distribution?

 Goals and challenges of distributed systems

 Where is the borderline between a computer and a

distributed system?

 Examples of distributed architectures

2 6 September 2012 Ruohomaa et al.: Distributed Systems

Definition of a Distributed System

 A distributed system is

 a collection of independent computers
 that appears to its users

as a single coherent system.

... or ...
as a single system.

6 September 2012 3 Ruohomaa et al.: Distributed Systems

Where Does the Definition Leave Us?

 Which of the following are distributed systems?

4 6 September 2012 Ruohomaa et al.: Distributed Systems

Multi-core processor

Multi-processor computer

One data center

Computing cluster

Network of

data centers

Local Area Network

Corporate intranet

Internet

Web

My workroom electronics

Examples of Distributed Systems

• one single “system”

• one or several autonomous subsystems

• a collection of processors => parallel processing
 => increased performance, reliability, fault
 tolerance

• partitioned or replicated data
 => increased performance, reliability, fault tolerance

Distributed application

6 September 2012 5 Ruohomaa et al.: Distributed Systems

Goals and challenges for

distributed systems

Getting a feel of the playing field

Goals

 Making resources accessible

 Openness

 Scalability

 Security

 Fitting the given concrete environment

 Fulfilling system design requirements

 Distribution transparency

 What could go wrong?

6 September 2012 7 Ruohomaa et al.: Distributed Systems

Challenges for Making Resources Accessible

 Goal: should be easy for users to access/share resources

 What it takes to achieve this:

 Naming

 Access control

 Security

 Availability

 Performance

 Mutual exclusion of users, fairness

 Consistency in some cases

8 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges for Openness

 Goal: follow standard rules, allow different players on field

 Interoperability: allow different solutions to coexist

 Portability: solution executable as is in different systems

 Extensibility: simple to add new components, or

 Possible to reimplement (by independent providers)

 Supported by

 Public, well-specified interfaces

 Standardized communication protocols

 Separation of policy (rules of use) from mechanism

(functionality available for use): allows change of policy

9 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges for Scalability (1/2)

Scalability:

 The system will remain effective when there is a

significant increase in:

 number of resources to track

 number of users to serve

 The architecture and the implementation must allow it

 The algorithms must be efficient under the circumstances

to be expected

 Example: the Internet

10 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges for Scalability (2/2)

 Controlling the cost of physical resources

 Controlling performance loss

 Preventing software resources running out

 Avoiding performance bottlenecks

 Scaling solutions

 asynchronous communication, decreased messaging

 caching (all sorts of hierarchical memories: data is closer to

the user  no wait - assumes rather stable data!)

 distribution i.e. partitioning of tasks or information (domains)

(e.g., the DNS, handling domain names on the Internet)

11 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges for Distribution Transparency (1+)

 Goal: Collection of independent, autonomous actors

appear to user as single unified system

 Hide the distribution

 Different categories of transparency:

12 6 September 2012 Ruohomaa et al.: Distributed Systems

Transparencies (RM-ODP standard, 1998)

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located (*)

Migration

Hide that a resource may move to another location (*)

(the resource does not notice)

Relocation

Hide that a resource may be moved to another location (*)

while in use (the others don’t notice)

Replication Hide that a resource is replicated

Transaction Hide that multiple competing users perform concurrent actions on the resource

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

(*) Note the various meanings of ”location”: network address (several layers) ; geographical address

6 September 2012 13 Ruohomaa et al.: Distributed Systems

Challenges for Distribution Transparency (2)

 Concurrency

 Many things happening at the same time

 Replications and migration cause additional requirements:

 Ensure consistency between different replicas and

 Support distributed decision-making

 Heterogeneity

 All the differences in hardware, software, etc to account for

 Failure models

 Things can go wrong in different ways

14 6 September 2012 Ruohomaa et al.: Distributed Systems

Handling Concurrency

 Concurrency:

 Several simultaneous users => integrity of data

- mutual exclusion

- synchronization

- ext: transaction processing in databases

 Replicated data: consistency of information?

 Partitioned data: how to determine the state of the system?

 Order of messages?

 There is no global clock!

15 6 September 2012 Ruohomaa et al.: Distributed Systems

Consistency Maintenance

 Update ...

 Replication ...

 Cache consistency

 Failure ...

 Clock ...

 User interface

16 6 September 2012 Ruohomaa et al.: Distributed Systems

Handling Heterogeneity

 Heterogeneity of

 networks

 computer hardware

 operating systems

 programming languages

 implementations of different developers

 Portability, interoperability

 Mobile code, adaptability (applets, agents)

 Middleware (CORBA etc)

 Degree of transparency? Latency? Location-based

services?

17 6 September 2012 Ruohomaa et al.: Distributed Systems

Failure handling: what can go wrong?

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes send, but the message is not put
in its outgoing message buffer.

Receive-

omission

Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

6 September 2012 18 Ruohomaa et al.: Distributed Systems

What can go wrong? Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

6 September 2012 19 Ruohomaa et al.: Distributed Systems

Failure Handling

 More components => increased fault rate

 Increased possibilities

 more redundancy => more possibilities for fault tolerance

 no centralized control => no fatal failure

 Issues

 Detecting failures

 Masking failures

 Recovery from failures

 Tolerating failures

 Redundancy

 New: partial failures

20 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges for Security

 Mostly similar to normal challenges in wide-area networks

 Sometimes easier, with closed, dedicated systems

 Solution techniques

 cryptography

 authentication

 access control techniques

 Policies

 access control models

 information flow models

 Leads to: secure channels, secure processes, controlled

access, controlled flows

21 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges from the Environment

 A distributed system:

 HW / SW components in different nodes

 components communicate (using messages)

 components coordinate actions (using messages)

 Distances between nodes vary

 in time: from 1 millisecond to weeks

 in space: from 1 mm to thousands of kilometers

 in dependability: link always there or completely unreliable

 Autonomous independent actors (=> independent

failures, too!)

No global clock

Global state information not possible

22 6 September 2012 Ruohomaa et al.: Distributed Systems

Challenges from Design Requirements

 Performance requirements

 responsiveness

 throughput

 load sharing, load balancing

 issue: abstract algorithm vs. actual system behavior

 Quality of service requirements

 correctness (in nondeterministic environments)

 reliability, availability, fault tolerance

 security (again with the security!)

 performance

 adaptability

23 6 September 2012 Ruohomaa et al.: Distributed Systems

False assumptions everyone makes when

developing their first distributed application:

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

 Bandwith is infinite

 Transport cost is zero

 There is one administrator

 There is inherent, shared knowledge

 By Peter Deutsch (creator of Ghostscript)

24 6 September 2012 Ruohomaa et al.: Distributed Systems

Systems, Architectures and System

Architectures

Where is the borderline between a computer

and a distributed system?

Hardware: The Bottom Layer

 The behavior of software systems is affected by:

 The platform

 the individual nodes (”computer” / ”processor”)

 communication between two nodes

 organization of the system (network of nodes)

 ... and its characteristics

 capacity of nodes

 capacity (throughput, delay) of communication links

 reliability of communication (and of the nodes)

 Which ways to distribute an application are feasible

26 6 September 2012 Ruohomaa et al.: Distributed Systems

Basic Organizations of a Node

Different basic organizations and memories in distributed computer

systems

6 September 2012 27 Ruohomaa et al.: Distributed Systems

A Look at Hardware Level: Multiprocessors

A bus-based multiprocessor.

Essential characteristics for software design

• fast and reliable communication (shared memory)

 => cooperation at ”instruction level” possible

• bottleneck: memory (especially the ”hot spots”)

6 September 2012 28 Ruohomaa et al.: Distributed Systems

General Multicomputer Systems

 Hardware setup may be very heterogeneous

 Loosely connected systems

 Nodes are autonomous

 Communication is slow and vulnerable

 => Cooperation at ”service level”

 Application architectures

 Multiprocessor systems do parallel computation

 Multicomputer systems form distributed systems

29 6 September 2012 Ruohomaa et al.: Distributed Systems

Some concepts for the coming history tour

System Description Main Goal

DOS

Tightly-coupled operating system for

multiprocessors and homogeneous

multicomputers

Hide and manage

hardware resources

NOS
Loosely-coupled operating system for

heterogeneous multicomputers (LAN and WAN)

Offer local services to

remote clients

Middle-

ware

Additional layer atop of NOS implementing

general-purpose services

Provide distribution

transparency

DOS: Distributed OS; NOS: Network OS

6 September 2012 30 Ruohomaa et al.: Distributed Systems

Brief history of distributed systems (1/3)

 RPC by Birel & Nelson -84

 Network operating systems, distributed operating

systems, distributed computing environments in mid-1990;

middleware referred to relational databases

 Distributed operating systems – form ”a single computer”

 Distributed process management

- process lifecycle, inter-process communication, RPC,

messaging

 Distributed resource management

- resource reservation and locking, deadlock detection

 Distributed services

- distributed file systems, distributed memory, hierarchical

global naming

31 6 September 2012 Ruohomaa et al.: Distributed Systems

Brief history of distributed systems (2/3)

 Late 1990’s: distribution middleware well-known

 generic, with distributed services

 supports standard transport protocols and provides standard API

 available for multiple hardware, protocol stacks, operating

systems

 Examples: Distributed Computing Environment (DCE) ’90s,

Microsoft’s COM and later .NET framework, OMG’s CORBA

 present middlewares for

 multimedia, realtime computing, telecom

 ecommerce, adaptive / ubiquitous systems

32 6 September 2012 Ruohomaa et al.: Distributed Systems

Brief history of distributed systems (3/3)

 Late 1990’s: distribution middleware well-known

 Generic, with distributed services

 Support standard transport protocols and provide standard API

 Available for multiple hardware, protocol stacks, operating

systems

 Examples: Distributed Computing Environment (DCE) ’90s,

Microsoft’s COM and later .NET framework, OMG’s CORBA

 Present middlewares exist for

 multimedia, realtime computing, telecommunications

 eCommerce, adaptive / ubiquitous systems

33 6 September 2012 Ruohomaa et al.: Distributed Systems

Operating systems and middleware

System Description Main Goal

DOS

Tightly-coupled operating system for

multiprocessors and homogeneous

multicomputers

Hide and manage

hardware resources

NOS
Loosely-coupled operating system for

heterogeneous multicomputers (LAN and WAN)

Offer local services to

remote clients

Middle-

ware

Additional layer atop of NOS implementing

general-purpose services

Provide distribution

transparency

DOS: Distributed OS; NOS: Network OS

6 September 2012 34 Ruohomaa et al.: Distributed Systems

Multicomputer Operating Systems (1)

General structure of a multicomputer operating system

6 September 2012 35 Ruohomaa et al.: Distributed Systems

Multicomputer Operating Systems (2)

Alternatives for blocking and buffering in message passing.

6 September 2012 36 Ruohomaa et al.: Distributed Systems

Distributed Shared Memory Systems (1)

a) Pages of address space

distributed among four

machines

b) Situation after CPU 1

references page 10

c) Situation if page 10 is

read only and replication

is used

6 September 2012 37 Ruohomaa et al.: Distributed Systems

Distributed Shared Memory Systems (2)

False sharing of a page between two independent processes.

6 September 2012 38 Ruohomaa et al.: Distributed Systems

Network Operating System (1)

General structure of a network operating system.

6 September 2012 39 Ruohomaa et al.: Distributed Systems

Network Operating System (2)

Two clients and a server in a network operating system.

6 September 2012 40 Ruohomaa et al.: Distributed Systems

Network Operating System (3)

Different clients may mount the servers in different places.

6 September 2012 41 Ruohomaa et al.: Distributed Systems

Above the Operating System: Software Layers

 Platform: computer & operating system & ..

 Middleware:

 Mask heterogeneity of lower levels

 (at least: provide a homogeneous “platform”)

 Mask separation of platform components

- Implement communication

- Implement sharing of resources

 Applications: e-mail, www-browsers, …

42 6 September 2012 Ruohomaa et al.: Distributed Systems

Positioning Middleware

General structure of a distributed system as middleware.

6 September 2012 43 Ruohomaa et al.: Distributed Systems

Middleware

 Operations offered by middleware

 Remote Method Invocation (RMI), group communication,

notification, replication, …

 (Sun RPC, CORBA, Java RMI, Microsoft DCOM, ...)

 Services offered by middleware

 Naming, security, transactions, persistent storage, …

 Limitations

 Ignorance of special application-level requirements

End-to-end argument:

 Communication of application-level peers at both ends is

required for reliability

44 6 September 2012 Ruohomaa et al.: Distributed Systems

Middleware and Openness

 In an open middleware-based distributed system, the protocols used by

each middleware layer should be the same, as well as the interfaces

they offer to applications.

6 September 2012 45 Ruohomaa et al.: Distributed Systems

Comparison between Systems

Item

Distributed OS

Network OS

Middleware-based

OS Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared memory Messages Files Model specific

Resource management Global, central Global, distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

6 September 2012 46 Ruohomaa et al.: Distributed Systems

More examples on distributed

software architectures

Client-server model generalized,

Peek at architectural styles

Architectural Models

 Architectural models provide a high-level view of the

distribution of functionality between system components

and the interaction relationships between them

 Architectural models define

 components

 communication

 Criteria for architecture design:

 performance

 reliability

 scalability, …

48 6 September 2012 Ruohomaa et al.: Distributed Systems

Client-Server Architectures

 General interaction between a client and a server.

6 September 2012 49 Ruohomaa et al.: Distributed Systems

Layered architecture

 The general organization of an Internet search engine into three different layers

6 September 2012 50 Ruohomaa et al.: Distributed Systems

Multitiered Architectures (1)

Alternative client-server organizations.

6 September 2012 51 Ruohomaa et al.: Distributed Systems

Multitiered Architectures (2)

Client - server: generalizations

node 1 node 2

request

reply

node 3

node 4

A client: node 1
 server: node 2

A B

B client: node 2
 server: node 3

the concept is related
to communication
not to nodes

6 September 2012 52 Ruohomaa et al.: Distributed Systems

Multitiered Architectures (3)

An example of a server acting as a client.

6 September 2012 53 Ruohomaa et al.: Distributed Systems

Modern Architectures

An example of horizontal distribution of a Web service.

6 September 2012 54 Ruohomaa et al.: Distributed Systems

Chapter Summary

 Introduction into distributed systems

 Challenges and goals of distributing

 Examples of distributed systems

55 6 September 2012 Ruohomaa et al.: Distributed Systems

