
Management, Structures and Tools to Scale up Personal
Advising in Large Programming Courses

Jaakko Kurhila and Arto Vihavainen
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ kurhila, avihavai }@cs.helsinki.fi

Final draft

Originally appeared as: J. Kurhila and A. Vihavainen: Management, structures and
tools to scale up personal advising in large programming courses. In SIGITE’11:
Proceedings of the 12th annual conference on IT Education. ACM Press, 2011.

Abstract
We see programming in higher education as a craft that benefits from

a direct contact, support and feedback from people who already master it.
We have used a method called Extreme Apprenticeship (XA) to support
our CS1 education. XA is based on a set of values that emphasize ac-
tual programming along with current best practices, coupled tightly with
continuous feedback between the advisor and the student. As such, XA
means one-on-one advising which requires resources. However, we have
not used abundant resources even when scaling up the XA model. Our
experiments show that even in relatively large courses (n = 192 and 147),
intensive personal advising in CS1 does not necessarily lead to more ex-
pensive course organization, even though the number of advisor-evaluated
student exercises in a course grew from 252 to 17420. A thorough compar-
ison of learning results and organizational costs between our traditional
lecture/exercise-based course model and XA-based course model is pre-
sented.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information Science Ed-
ucation Computer Science Education

General Terms Human Factors

Keywords course cost, resource allocation, individual education, conttinuous
feedback, instructional design, programming educattion

1



1 Introduction
We have organized our CS1 courses (and nowadays also other programming and
data structure courses) for the last three times using a method called Extreme
Apprenticeship (XA). One of the key points of XA is that it emphasizes doing
over everything else, questioning the utility of lectures, and focuses on active
teacher-student collaboration. To be more specific, there are two core values
that are stressed in all course activities (adapted from the original description
in [16]):

• The craft can only be mastered by actually practicing it, as long as it is
necessary. In order to be able to practise the craft, the students need to
do lots of meaningful exercises. The exercises are designed to build up
both skill and knowledge.

• Bi-directional continuous feedback makes the learning process meaningful
and effective. It is vastly more efficient if a learner receives even small
signals that tell her that she is progressing and into the correct direction.
In order to give out those signals to the learner, the advisor must be aware
of the successes and challenges of the learner. In other words, the advisor
must be aware of the student’s activities.

The results of applying XA have been impressive in the context of our uni-
versity, as the drop-out rate, pass rate and grade distribution are all improving1.
The reasons behind the success stem from the fact that without a prior experi-
ence, learning to program has been considered a hard task to master in higher
education [15, 3, 14, 12]. Personal XA-based advising sees to it that every
individual student practices with tens of simple exercises already during the
first week of the course, enforces active participation, and seeks to disable stu-
dents’ ability to procrastinate until the eve of the exam. Learning achievements
become visible to the student and internal motivation goes up.

It is easy to believe that organizing XA-style personal learning is straight-
forward when there is a handful of eager, knowledgeable students and enough
competent, hard-working teachers. However, a formal educational organization
has its organizational objectives that go beyond a single CS1 teacher; often
it means that there are volumes of students with varying backgrounds, i.e. no
prior programming experience and relatively low intrinsic motivation toward
the subject matter.

This paper describes what kind of human resources and tools are needed in
order to enable XA-style education in a large CS1 course. In other words, it is
a description of how XA-based education can be scaled up to meet the needs of
a formal educational organization that has to serve some two hundred students
in CS1. This type of research has been relatively rare and is often only available
in a form of policy-level meta-discussion (see e.g. [13]). The empirical evidence
behind our attempt is largely based on three separate cycles of XA-based CS1

1Data in an unpublished manuscript in preparation [10].

2



courses2. The first cycle of our CS1 courses (Part I and Part II) consisted of
67 and 44 students. When we scaled up the course for Fall 2010, we applied
the XA model for significantly larger (192 and 147 students) CS1 courses. In
Spring 2011, we applied the XA model with no lectures.

The next section describes the XA method and establishes its value by pre-
senting the improvement in learning results. The remaining sections discuss the
issues that arise when one scales up the XA method.

2 Extreme Apprenticeship
Extreme Apprenticeship (XA) builds on Cognitive Apprenticeship [7, 8], a clas-
sic model for learning. First, the student is provided with a conceptual model
of the process.

Second, students are exposed to tasks (i.e. exercises) that are to be com-
pleted under material and advisor scaffolding. Scaffolding refers to supporting
students in a way that they are not given answers, rather, just enough hints to
be able to discover the answers to their questions themselves. Scaffolding works
especially well if students are in the zone of proximal development [17]: not too
hard, not too easy, just able to do if properly advised.

Scaffolding is faded away when the student starts to master a task.

Practical operation of XA

Many earlier applications on programming education that rely on Cognitive
Apprenticeship exist [1, 2, 4, 9]. Extreme Apprenticeship differs from these by
the practical issues involved:

1. start with exercises; use small incremental exercises that ensure achievable
tasks; exercises need to provide clear guidelines on how to start solving
the task and when a task is considered finished

2. exercises define lecture form and content; minimize lecturing and maximize
number of exercises

3. advisor must be present in a same space when student is working on the
exercises

4. best up-to-date programming practices are emphasized throughout the
scaffolding phase

5. students are encouraged to extend their knowledge beyond the instruction
provided

Practices 3–5 pose a challenge to the resource consumption and allocation
when the number of participants in a course grow. Practice 3 requires added
resource consumption, and Practices 4 and 5 require competence from advisors.

2In Fall 2010, we used XA-based approach also in our "Computer as a tool" course; in
Spring 2011 XA was used partly in our CS2 course (called "Data Structures") and in a new
course called "Clojure Programming". The XA-related statistics concerning these courses
other than CS1 are out of scope of this paper.

3



Issues with practices 4 and 5 are out of the scope of this paper, since we did not
try to purposefully improve the competence of the advisors, even though it is a
benefit for the student if the advisor is competent in versatile ways.

2.1 Extreme Apprenticeship in CS1

Course contents

Our semester-length (6+6 weeks) CS1-type introductory Java programming
course consists of two separate parts: Introduction to Programming (part I) and
Advanced Programming (part II). Topics covered in both the courses are typical:
assignment, expressions, terminal input and output, basic control structures,
classes, objects, methods, arrays and strings; advanced object-oriented features
such as inheritance, interfaces and polymorphism; the most essential features of
Java API, exceptions, file I/O and GUI.

In addition to the exercises, all the study material shown in the lectures is
available to students on-line as a web page but written in concise XA style.
The material blends both exercises and supporting material, providing students
scaffolding as they proceed.

Lectures

As the principles of XA state, lectures are not a necessity in learning to
program. This is also evident in our experiments. In Spring 2010, we reduced
the number of lectures from the usual 5 hours per week to 2 hours for the first
part of CS1, and from 4 to 2 in the second part. In Fall 2010, the responsible
lecturer was willing to reduce his lecture hours from 5 to 4 per week. The second
part remained the same, 4 hours a week.

It should be noted that there is no minimum in the number lectures in XA-
based education. In our Spring 2011 CS1 course, there was only one 1 hour
lecture in the whole course (parts I and II combined). Yet the results from the
first part are even better than our previous XA-based courses (see the stats in
section 2.2).

Exercises

It is expected that students in XA-based courses use most of the time they
devote to the course in active solving of programming exercises – either in
the computer lab or at home, if the student feels that she has less need for
scaffolding. This trains the routine and gives a constant feeling of success by
achieving small goals.

For each week a set of new exercises is introduced. We have had number of
exercises ranging from 15 to 40. Especially at the start of the course, most of the
exercises are small and relatively straightforward. Sequentially completed small
exercises combine into larger, more complex programs, which are substantially
more challenging than the exercises in our traditional CS1 courses. An added

4



benefit is that combination of smaller parts show the learner how to split a big
programming task into sub-tasks.

Exercise sessions with continuous feedback

All exercise sessions need a computer lab or a room with computers with
suitable software to conduct the actual programming. XA-based advising is
constantly available to the students present during the exercise sessions. Anyone
can enter the lab without having to reserve a specific time slot.

If a student does not have specific questions during the exercise session, the
advisors are actively observing that the students are working towards the right
direction with good working habits, with plenty of verbal constructive feedback.

2.2 Learning results
Comparing the outcomes of the Extreme Apprenticeship -based courses to the
previous course instances in terms of percentage of passed students shows clearly
that the results have improved after the introduction of XA.

Results are reported separately in the tables below for CS1 part I (Intro-
duction to programming) and Part II (Advanced programming). The XA-based
implementations are highlighted in bold face. The column titled n denotes the
number of students in each course. The pass-rates are comparable for all the
course implementations as the course exams have been kept similar3. Signifi-
cant difference between Spring and Fall semesters that re-occur every year has
previously been explained by the fact that courses on Fall semesters consist
mostly of CS majors, while Spring semesters consist mostly of CS minors – in
XA implementations we have not noticed considerable differences between the
skills of minors and majors.

3 Scaling up Extreme Apprenticeship
It is clear that both of the core values of XA (i.e., hands-on practicing and
bi-directional feedback) are inherently resource-dependent. Practicing needs a
space and a computer with appropriate software; continuous feedback requires
advisor input for the student.

The first value proved not to be a problem when scaling up the course. Al-
most every student of ours has nowadays her own laptop4. Most of the computer
labs have been dismantled and the remaining few have been heavily underused.
Therefore, it was not a problem to just book the labs for the purpose. Moreover,

3The low acceptance rate in CS1 part II of Spring 2011 might be explained by the number
of tedious experimental exercises that were created by perhaps overly eager TAs – which in
turn caused a high drop-out rate. The exam acceptance rate was high: 88 %.

4In addition, our department has provided new CS majors a mini-laptop computer at the
very beginning of their studies. Albeit not very suitable for programming, they have been
used in the XA labs.

5



CS1 part I
n passed

s02 92 38.0 %
f02 332 53.6 %
s03 98 39.8 %
f03 261 64.0 %
s04 84 61.9 %
f04 211 59.2 %
s05 112 46.4 %
f05 146 54.1 %
s06 105 41.9 %
f06 182 65.4 %
s07 84 53.6 %
f07 162 53.0 %
s08 72 58.3 %
f08 164 56.1 %
s09 53 47.7 %
f09 140 64.3 %
s10 67 70.1 %
f10 192 71.3 %
s11 80 73.8 %

CS1 part II
n passed

s02 88 26.1 %
f02 249 56.2 %
s03 65 30.8 %
f03 228 59.2 %
s04 66 43.9 %
f04 177 66.1 %
s05 70 57.1 %
f05 125 56.0 %
s06 52 44.2 %
f06 147 67.3 %
s07 53 58.5 %
f07 136 59.6 %
s08 29 51.7 %
f08 147 56.5 %
s09 22 50.0 %
f09 121 60.3 %
s10 44 86.4 %
f10 147 77.6 %
s11 84 67.1 %

Table 1: Learning results. Courses before Spring 2010 have been organized
using traditional lecture format.

introductory programming does not require state-of-the-art computers or expen-
sive software. Our lab workstations are equipped with no-cost Linux together
with no-cost NetBeans as the pre-installed development environment.

The second value, continuous feedback when practicing, is clearly more diffi-
cult to scale up without a direct hit to resource consumption. Moreover, resource
usage for continuous feedback is amplified significantly with XA, as there are
tens of exercises for every individual. To make this difference more clear, we will
present actual numbers from CS1 part I courses: For Fall 2009, our traditional
approach typically had 7 exercise groups (of 25 students); every week there were
6 exercises given out. In exercise sessions, one student presented her solution in
front of the group and received feedback from the teaching assistant5. During
the 6-week course, the total number of individual feedback for exercises for all
the students combined is 252 (7 * 6 * 6). In the end of the XA-based course in
Fall 2010, there were a total of 17420 individually evaluated exercises.

Key solution for overcoming the challenge of resource consumption is to
optimize the allocation over time dynamically by using tools, structures, and
even voluntary human resources. These issues are discussed in detail next.

5In traditional formats at out University, it is also common that when a TA asks for
questions, the student do not dare to voice their concerns in a group.

6



3.1 Dynamic coordination of XA advisors and tools

Dynamic coordination of XA advisors

When we scaled up the XA lab for Fall 2010, we designated one of the
advisors as advisor coordinator. This was necessary in order to manage day-
to-day activities of the XA lab and allocate sufficient resources to appropriate
situations. The advisor coordinator had also a final say when recruiting new
advisors. The coordinator was a faculty member and received no compensation
for the task.

All other advisors worked under the advisor coordinator. The rest of the ad-
visor structure emerged implicitly. All the advisors were compensated equally
even though some of the advisors stepped up more than others during the
courses. So-called apprentices, i.e. fellow students who started to grow into
the role of an advisor, emerged during the courses but were not formally recog-
nized nor financially compensated. Some of these apprentices were recruited for
the next course as proper advisors, thus enabling continuous flow of advisors to
be present.

In traditional courses, teaching assistants (that correspond to advisors in
XA-based courses) are compensated with 39 euros/hour. The rationale behind
the relatively high pay per hour is that there is a need for preparation for hosting
an exercise session. In all XA courses, the advisors are compensated only 17
euros/hr, typically 2-6 hrs per week per advisor. The rationale for the relatively
low pay is that the advisors cannot prepare for the XA sessions, as the advisors
encounter students’ programs fresh in the lab. No advisor complained about
the lower per-hour salary, and at no point of time there has been a shortage of
very competent students that want to work as advisors.

Many of the advisors are in the early stages of their studies, and their teach-
ing experiences are limited to student tutoring at most. Some were truly novice
programmers as they did not have any programming experience outside the
CS1 courses. The only common denominator among the advisors is the atti-
tude: ready to work with other students, active and eager to help. Even so,
learning results and student feedback has been impressive.

Some of the advisors took a strong role very early in the course but started
to fade away towards the end as they felt that their expertise was not sufficient
in the latter parts of the course. However, when someone started to fade, there
were always advisors who started to step up. This process was "natural" and
did not need any management.

Each advisor had the possibility to choose the most preferable time slots for
him or her. On-demand service was ensured using IRC6. On situations where
there were too many students, the advisor were able to ask for extra assistance
on-line. We aimed for 1/10 advisor/student ratio in the lab. The communication
tool worked also as a fast way to help and share information on problems that
a specific advisor himself had faced earlier – similarly the advisors were able

6In practise, any instant messaging tool, e.g. Facebook Chat, Google Talk, Skype or MSN
Messenger, can be used – our advisors used mainly classic IRC as they were already using it.

7



to ask for tips on problems they could not help to solve. In addition to IRC,
the advisors used text messages and mobile phones to communicate to other
advisors. Dynamical resource allocation was welcomed by the advisors.

As ad hoc recruitment was practiced, there was no possibility for formal
training. Fellow advisors informally and implicitly trained the new advisors. In
addition, a "XA lab Manifesto" was established. The manifesto was published
in a wiki and updated slightly as experience of proper advising principles grew
during the courses. It simply stated few guidelines as pedagogical practices.
Note that the practises were worded as personal imperatives, in order to make
them more personal:

• You will advise everyone in trouble

• You will not give out solutions but guide the student as much as needed
in order to nudge the student to find the solutions herself.

• Advisors do constant round-robin in the lab. Observe and comment on
students’ progress even if no-one asks anything.

• You will pay attention to the code style: students will learn to program
according to Clean Code principles.

• Correct solutions is not enough. You need to push the style towards more
understandable and maintainable code.

• Even if there is a slow moment in the lab, you as an advisor cannot sit
still minding your own business!

The key issue to keep the lab records correct on a day-to-day basis was an
addendum to the XA lab Manifesto, called "Bookkeeping 101". As every advi-
sor understood that XA-based courses can potentially be overly expensive, we
communicated clearly the no-waste approach to education and resource usage:

• Prior to course formally agreed lab-hours should be marked down

• If you are alerted to the lab when there is a need for extra advisor, lab-
hours are marked down.

• If your lab-time ends but there is less than 10 students remaining and you
will stay, lab-hours are marked down. Note: Only one advisor will mark
down her hours.

• If your lab-time ends but there is less than 5 students remaining, no advisor
will mark down her hours except in special cases.

• If you are advising in the lab for fun, e.g. when not needed or outside our
normal hours, you will not mark down your hours.

• Mark your hours by the end of the day.

8



Tools

For bookkeeping of student exercises and allocation of advisors, we utilized
online spreadsheets in Google Docs with our own macros, which allowed us to
keep track of the money spent so far and the demand for advisors during specific
times.

In exercise sessions, students had their completed exercises marked down
to a check-list, allowing them to see the check-list filled with their completed
exercises. We feel that the list played an important role in feedback; every check
was an achievement. Check-lists were also updated to the course web-page at
the end of every day, allowing students to see the progress of other students as
well. In a way, this additional feedback for the students was nearly cost-free, as
the records were kept in any case.

4 Results when scaling up XA
Key numbers about the scalability are composed into the tables 2 and 3; partici-
pants is the number of active students in the course; eval. exercises corresponds
to the number of exercises that the advisors evaluated from the students; ad-
visors is the number of advisors in the advisor pool in that course. The roles
and thus their individual working hours varied significantly, from just few hours
to 41 hours; advisor hours is the total hours the advisors used in total for the
course; total advisor cost is total cost for advisor salaries during the course; cost
for lectures is the cost for lectures7; n/a means that in the initial XA courses
advisor hours were not separately tracked. It should also be noted that the
advisor coordinator was taking part in the XA labs as tenured faculty develop-
ing education, so his salary is not included in XA courses, even though he was
actively conducting XA-style advising in the labs.

Fall 2009 courses are traditional and thus based on lectures and exercises;
all the other three course instances are full XA-based courses.

term f09 s10 f10 s11
participants 140 67 192 80
eval. exercises 252 6409 17420 10648
advisors 5 3 13 11
advisor hours 72 n/a 310 223
total advisor cost 2808 n/a 5270 3791
cost for lectures 3861 1544 3088 129

Table 2: CS1 part I: Introduction to Programming.

We can see from Table 2 that there is a difference in advisor cost (called TA
in traditional Fall 2009 course). However, it is more than compensated by the

7Lectures in CS1 have been given by tenured teachers, therefore, the cost is hypothetical
but based on our actual salary table for the external teachers. In reality, the price tag could
be higher as tenured lecturers often do not handle other tasks during courses.

9



number of exercises (17420) and contact hours (310) the advisors did for the
students.

term f09 s10 f10 s11
participants 121 44 147 84
eval. exercises 252 5056 7349 9961
advisors 4 7 13 11
advisor hours 72 n/a 271 166
total advisor cost 2808 n/a 4607 2822
cost for lectures 3861 1544 3088 0

Table 3: CS1 part II: Advanced Programming.

In addition, Spring 2011 course shows that there is a possibility to save on
lectures; in CS1 part I, lectures were cut to only 1 hr (cost of 129 compared
to traditional course cost 3088), and in part II, there were zero lectures. Even
with minimal lecturing, the course results (Table 1) are higher than ever, even
among constantly high-achieving XA-based courses. As stated before and in the
principles of XA, lectures are not a necessity.

Because of the increased number of students in Fall 2010, we pre-booked 20
lab hours every week in Fall 2010. In Spring 2010, every week had 8 hours of
pre-booked lab time available for the students. In our cost structure, additional
lab hours did not pose an additional burden to the budget, since lab reservations
can be made free-of-charge. For us, hosting a course entirely in a computer lab
would be the cheapest option, as lecture halls and other seminar rooms are
rented with high hourly rates. However, money saved by room allocation is not
considered in the statistics above, as the rent allocation scheme is a speciality
for our university.

Involuntary charity work?

Since the advisors knew the limit for resource usage and could follow the
time and money spent into advising, it is possible to think that some of them
started to mark down fewer-than-real hours they spent in the XA lab. We can
examine the progress of weekly time spent in XA-labs for the advisors (Table 4).
It is clear from the figures in Table 4 that this was not the case: the total hours
by the advisors correspond to the overall course timeline. Therefore, there is no
sign that the advisors felt pressure to do "charity" work, i.e. work without the
pay.

Advisor feedback

It is expected that the advisors think that XA requires more work than being
a traditional teaching assistant. However, the advisors compared their experi-
ences in XA-style advising to traditional models as "much more rewarding" and
"not perceived consuming since it feels so meaningful". Rapid, visible progress
of the students was considered efficient use of advisor time. In fact, the advisor

10



Week
Term 1 2 3 4 5 6
f10 - CS1 part I 40 51 56 51 50 50
f10 - CS1 part II 31 45 53 28 47 67
s11 - CS1 part I 37 38,5 34,5 41,5 35,5 36
s11 - CS1 part II 28 31 32,5 28,5 23 23

Table 4: Weekly hours used by advisors.

feedback revealed that the experience was so rewarding, that many advisors
volunteered (or "chilled out") in the computer lab and advised the students just
for fun.

We sent out a web-form to advisors to collect feedback on the experience on
a five-point likert scale8. We measured the following dimensions: "rewarding for
the assistant" (rewarding), "laborious for the assistant" (laborious), "instructive
for the student" (instructive) and "timewise efficient" (efficient). In addition to
the previous four dimensions, we presented a meta-question "has improved my
own knowledge" (improving). We present answers from only the advisors (n =
9) that have been assisting in both traditional exercise sessions and XA sessions.
The statistics for the five dimensions are shown in table 5.

Question Traditional XA
rewarding 3.22 4.44
laborious 2.66 3.11
instructive 2.88 4.55
efficient 2.44 4.66
improving 3.77 4.44

Table 5: Feedback averages using five-point likert scale when comparing tradi-
tional exercise session format with XA exercise sessions.

Table 5 clearly displays the advantage of XA exercise sessions over traditional
exercise sessions. Note that all the interviewed advisors had been working in
both XA style and traditional exercise sessions.

We also gathered anonymous comments from the advisors. The easy going-
feeling of XA sessions is reflected in the following advisor comment.

“XA exercise sessions work as a drop-in-model. You can just walk to the lab
and start scaffolding. Exercises are small for the advisor as well, which helps
guiding lots of students”.

Another advisor reflected students’ views in a few sentences, commented
on the challenges of being constructive in large groups, and pointed out that
students still tend to procrastinate during the weeks.

“Traditional exercise sessions cause far more stress for all parties. As a
student one spends energy due to the anxiety of possibly having to go to the

81: strongly disagree, 3: neither agree nor disagree, 5: strongly agree

11



front to present your solution, and to understanding the lacks and extras in the
presentations from others. As a TA you have an insane judgement- and quality
control-role, that cannot be handled easily in a constructive manner for the whole
group. In the XA labs it causes frustration that many students want to mark
down their exercises during the last days of the week.”

5 Conclusions
Extreme Apprenticeship provides a solid structure to organize education that
aims to build good routine in programming along with good programming habits
such as principles of Clean Code [11] and integrated testing [5, 6]. A key com-
ponent is that there are advisors who already master part of the craft and are
willing to interact with students to help them to grow into expertise. Empha-
sizing scaffolding in combination with the core values and the derived practices
has lead to clearly improved learning results. In fact, the results in learning
and the overall feeling towards programming as a tool have helped us at the
department to start to re-structure a significant part of our BSc degree courses
in CS to benefit from programming. It does not mean that there is a lack of
more abstract or theoretical concepts; on the contrary, we have started to see
that learning the abstract can benefit from hands-on programming if the stu-
dent is allowed to "code and play the abstract", not just "see and hear about
the abstract". Programming is a helpful tool for most of the issues in the CS
education.

It is obvious that hands-on programming practice with timely and construc-
tively helpful feedback needs resources and flexibility in arrangements. Our
experiments have shown that even if it is heavy work for all the involved parties
(students, teachers and administration), it is possible to receive significant ben-
efits without using significantly more resources. We have been able to match
the resources well by adding awareness and interaction between advisors using
appropriate tools along with solid processes of organization. We can sum up
two principles that we applied when managing XA-based advisor structure in
our context — in other words, "Extreme Management":

1. Known and visible upper boundary for resource usage. It is vital that
every person involved in resource consumption knows the absolute limit for
resource use and can view the resource consumption in (semi-)real time. This
alleviates the problem that there is the last part of the course going on but all
the resources are already used.

2. Maximum flexibility in organizational structures. When there are thou-
sands of exercises to be checked by a dozen advisors in one course, not every
detail of every aspect of the course is critical. Many of the rough edges (e.g. ad-
visor differences) balance out during the course as there is ample interaction
between the advisors and students. In practice, advisors will support each other
and do not need to be under explicit supervision.

12



6 Acknowledgments
Feedback and comments from all the advisors of all the XA-based courses have
been invaluable. We want to thank all the advisors (in no particular order)
for making XA possible; Aurora, Pekka, Juhana, Antti, Joel, Samuli, Niko,
Matti’s, Jenny, Jarkko, David, Lasse, Kimmo, Sebastian, Tuomas, Martin,
Janne, Joonas, Aleksi – and Thomas!

References
[1] O. Astrachan and D. Reed. AAA and CS 1: the applied apprenticeship

approach to CS 1. In SIGCSE ’95: Proc. 26th SIGCSE technical symposium
on Computer science education, pages 1–5. ACM, 1995.

[2] T. R. Black. Helping novice programming students succeed. J. Comput.
Small Coll., 22(2):109–114, 2006.

[3] R. E. Bruhn and P. J. Burton. An approach to teaching java using com-
puters. SIGCSE Bull., 35(4):94–99, 2003.

[4] M. E. Caspersen and J. Bennedsen. Instructional design of a programming
course: a learning theoretic approach. In ICER ’07: Proc. third interna-
tional workshop on Computing education research, pages 111–122. ACM,
2007.

[5] H. B. Christensen. Systematic testing should not be a topic in the computer
science curriculum! In Proc. 8th annual conference on Innovation and
technology in computer science education, ITiCSE ’03, pages 7–10, New
York, NY, USA, 2003. ACM.

[6] H. B. Christensen. Experiences with a Focus on Testing in Teaching, pages
147–165. Springer-Verlag, Berlin, Heidelberg, 2008.

[7] A. Collins, J. Brown, and S. Newman. Cognitive apprenticeship: Teaching
the craft of reading, writing and mathematics. In Knowing, Learning and
Instruction: Essays in honor of Robert Glaser. Hillside, 1989.

[8] A. Collins, J. S. Brown, and A. Holum. Cognitive apprenticeship: making
thinking visible. American Educator, 6:38–46, 1991.

[9] M. Kölling and D. J. Barnes. Enhancing apprentice-based learning of java.
In SIGCSE ’04: Proc. 35th SIGCSE technical symposium on Computer
science education, pages 286–290. ACM, 2004.

[10] J. Kurhila. Carry-on effect in extreme apprenticeship. In preparation.

[11] R. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008.

13



[12] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson. A survey of literature on the teaching of
introductory programming. In ITiCSE-WGR ’07: Working group reports
on ITiCSE on Innovation and technology in computer science education,
pages 204–223. ACM, 2007.

[13] L. B. Resnick and M. Williams Hall. Learning organization for sustainable
education reform. J. American Academy of Arts and Sciences, 127(4):89–
118, 1998.

[14] A. Robins, J. Rountree, and N. Rountree. Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13:137–172,
2003.

[15] H. Roumani. Design guidelines for the lab component of objects-first cs1.
In SIGCSE ’02: Proc. 33rd SIGCSE technical symposium on Computer
science education, pages 222–226. ACM, 2002.

[16] A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprenticeship
method in teaching programming for beginners. In SIGCSE ’11: Proc.
42nd SIGCSE technical symposium on Computer science education, 2011.

[17] L. S. Vygotsky. Mind in Society: The Development of Higher Psychological
Processes. Harvard University Press, Cambridge, MA, 1978.

14


