Extreme Apprenticeship Method:
Key Practices and Upward Scalability

Arto Vihavainen, Matti Paksula, Matti Luukkainen and Jaakko Kurhila
University of Helsinki
Department of Computer Science
P.O. Box 68 (Gustaf Héllstromin katu 2b)
Fi-00014 University of Helsinki
{ avihavai, mpaksula, mluukkai, kurhila }@cs.helsinki.fi

Final draft
Originally appeared as: A.Vihavainen, M.Paksula, M.Luukkainen and J. Kurhila:

Extreme apprenticeship method: key practices and upward scalability. In ITiCSE
2011: Proceedings of the 16th annual conference on Innovation and technology in

computer science education. ACM Press, 2011.

Abstract

Programming is a craft that can be efficiently learned from people who
already master it. Our previous work introduced a teaching method we
call Eztreme Apprenticeship (XA), an extension to the cognitive appren-
ticeship model. XA is based on a set of values that emphasize doing and
best programming practices, together with continuous feedback between
the master and the apprentice. Most importantly, XA is individual in-
struction that can be applied even in large courses. Our initial experiments
(n = 67 and 44) resulted in a significant increase in student achievement
level compared to previous courses. In this paper, we reinforce the validity
of XA by larger samples (n = 192 and 147) and a different lecturer. The
results were similarly successful and show that the application of XA can
easily suffer if the core values are not fully adhered to.

Categories and Subject Descriptors
K.3.2 [Computers and Education|: Computer and Information Science Ed-
ucation Computer Science Education

General Terms
Human Factors

Keywords
cognitive apprenticeship, continuous feedback, instructional design, program-
ming education, best practices

1 Introduction

Arts and crafts are necessary components in programming excellence. Unfortu-
nately, it is a "public secret" among many respected programming professionals
that university programming courses can be counterproductive as non-optimal
tools and old academic programming practices must be unlearned in order to
develop competence in coding quality. Part of the problem is that learning
programming is hard (e.g. [3, 12, 11, 10]).

Although a long line of research [13, 16, 11| indicates that the problem is
not in learning the syntax or semantics of individual language constructs, but in
mastering the process on how to combine constructs into appropriate programs,
lectures still tend to be structured according to the language constructs, rather
than the more general application strategies.

Nowadays, many admit that lecturing is not the best way to support learning
to program but even exercise sessions tend to remain as methods to just wit-
ness achieved learning results; typically, there is only minimal guidance to the
students doing the exercises. Accumulation of applied knowledge in a student is
assumed and expected. However, it is well-established in educational psychol-
ogy (e.g. [7]) that, due to human cognition, a minimally-guided approach can
be considered sub-optimal for novices learning tasks such as programming.

In a recent paper we presented a method that radically alters the traditional
way to approach introductory programming (CS1) education in the context of
formal higher education called Eztreme Apprenticeship (XA) [14]. XA is based
on a set of values and practices that emphasize actual doing of relevant work
together with continuous feedback as the most efficient means for appropriate
learning. Our previous experiments consisted of 67 and 44 students. The results
were strongly encouraging, so we continued the experiment with significantly
larger (n = 192 and 147) samples.

As the XA method strives to be as lecturer-independent as possible, this
time the XA experiment was conducted with a separately recruited lecturer with
extensive experience in traditional lecture-based courses but no involvement in
the development of the XA method. In addition, as the XA method is by
definition direct one-on-one interaction between the master and the apprentice,
a question of scalability of the method becomes important. We briefly describe
the tools and organizational approach used to scale up the XA method to larger
courses.

2 Extreme Apprenticeship

The Cognitive Apprenticeship (CA) model [5, 6] has many applications in teach-
ing programming (see e. g. [1, 2, 4, 8]). Extreme Apprenticeship (XA) builds
on the Cognitive Apprenticeship model. Similarly, it emphasizes the process
and consists of three phases: modeling, scaffolding and fading.

In modeling, the master, a teacher or an instructor, arms the apprentice,
a student, with a conceptual model of the process. An effective conceptual

model is a set of worked examples [4], i.e. a detailed description of completing a
programming task from start to finish. While completing the task, the master
is thinking aloud all the time, explaining the decisions made during the process.

After acquiring the conceptual model, apprentices are exposed to tasks
(i.e. exercises) to be completed under the guidance of a master. Scaffolding
refers to supporting apprentices in a way that they are not given answers, rather,
just enough hints to be able to discover the answers to their questions them-
selves. Scaffolding works especially well if apprentices are in the zone of proximal
development as described by Vygotsky [15].

Fading of scaffolding occurs when the apprentice starts to master a task.

Even though XA builds upon CA, it differs significantly from many recent
applications of CA in teaching programming (compared to e.g. [1, 2, 4, 8]). Our
XA method is described by its core values that should be stressed in all course
activities (paraphrasing differs slightly from the original description in [14]):

e The craft can only be mastered by actually practicing it. The skills to be
learned are practiced as long as it takes for each individual.

e Continuous feedback flows in both directions. The apprentice receives
feedback about his/her progress, and the master receives feedback by mon-
itoring the successes and challenges of the apprentices.

The values above induce a set of practices to be applied in all courses:

1. Effectiveness of lectures in teaching programming is questionable; there-
fore, lecturing should cover only the minimum before starting with the
exercises.

2. Topics covered in the lectures have to be relevant for the exercises.

3. Exercises start early, right after the first lecture of the course. During the
first weeks of the course all the apprentices are already solving an extensive
amount of simple exercises. This gives all the apprentices a strong routine
in writing code and a motivational boost right at the start of the course.

4. Exercises are completed in a lab in the presence of masters scaffolding
the instruction. There must be ample time to complete exercises while
masters are present.

5. Exercises are split into small, achievable tasks. These small intermediate
steps guarantee that apprentices can actually see that their learning is
progressing.

6. Exercises are the driving force, so the majority of exercises are mandatory
for all the apprentices.

7. The number of exercises should be high and to some extent repetitive in
their nature.

8. Exercises have to provide clear guidelines, i.e. starting points and struc-

tures, e.g. on how to start solving the task and when a task is considered
finished.

9. While doing the exercises apprentices are also encouraged to find out
things that are not covered during the instruction provided.

10. Best up-to-date programming practices are emphasized throughout the
scaffolding phase as they can be incorporated into instruction without
any extra effort.

3 Courses in Spring and Fall 2010

Our semester-length (14 calender weeks) CS1-type introductory Java program-
ming course consists of two separate parts: Introduction to Programming and
Advanced Programming. Topics covered in Introduction to programming are
assignment, expressions, terminal input and output, basic control structures,
classes, objects, methods, arrays and strings. Advanced programming concen-
trates on advanced object-oriented features such as inheritance, interfaces and
polymorphism, and discusses the most essential features of Java API, excep-
tions, file I/O and GUIL

Staffing

In Spring 2010, the lecturer was one of instructors in computer labs scaffold-
ing students in XA-based exercises. Lecture material and exercises were aligned
to suit scaffolding.

In Fall 2010, the lecturer was not a part of the XA team, in other words,
he was not scaffolding students in the lab using XA method. Scaffolding was
conducted solely by a group of instructors. All but one instructor were students
themselves. In both courses, all instructors were compensated 17 Euros per hr,
typically 2-6 hrs weekly.

There was an implicit hierarchy with the instructors, as a more experienced
teacher acted as the instructor coordinator and was responsible for recruitment
of additional instructors. A few instructors had significant programming expe-
rience (but limited teaching experience). Many of the instructors were in the
early stages of their studies, their teaching experiences were limited to student
tutoring at most. Some were truly novice programmers as they did not have
any programming experience outside the few courses they had just passed at
the university. The only common denominator among the instructors was the
attitude: ready to confront the students in person and their challenges; active
and eager to help.

Instructors were recruited "on the fly". As good atmosphere in the scaffold-
ing sessions became a talking point within informal student communities, many
students volunteered to be part of the XA-based course implementation.

Each instructor had the possibility to choose the most preferable time slots
for him or her. Instructors were also able to call for more help on demand via
IRC or text messaging, as some other instructors in the instructor pool were
available to join in on short notice. We allowed double-teaming at the times
we knew the labs were going to be full. We aimed for a 1 per 10 instructor per
student ratio in the lab.

Study material and lectures

The study material (including lectures) play a key role in the modeling phase
in teaching the skills to be learned. On the other hand, as programming is a
craft, it requires plenty of practice. In Spring 2010, we reduced the number of
lectures from the usual 5 hours per week to just 2 hours. In Fall 2010, the head
lecturer reduced his lecture hours from 5 to 4 per week.

All the material shown in the lectures was available to students on-line as a
web page, written in book-like format. The material followed the structure of
exercises, allowing students to read the material as they proceeded.

Exercises

It is expected that students attending XA-based courses use most of the
time they devote to the course in active solving of programming exercises. This
trains the routine and gives a constant feeling of success by achieving small
goals. Exercises especially in the beginning of the course were aimed to build
up programming routine and confidence, as well as getting familiar with the
environment and tools.

For each week we introduced a set of new exercises, an amount ranging from
15 to almost 40. Most of the initial exercises were small, especially at the start
of the course, like "output numbers from 1 to 99". Sequential small exercises
combined into bigger programs. Composing bigger programs showed students
how to split a big task to sub-tasks — a vital skill in programming. Many of the
sequentially done small exercises ended up as relatively large projects.

Exercise Sessions

All exercise sessions were organized in computer labs where students worked
to solve the exercises. Help, in form of instructors, was continuously available
during exercise sessions. Anyone could enter the lab without having to reserve
a specific time slot. In Spring 2010, each week had 8 hours of exercise sessions;
in Fall 2010, each week had 20 hours. Students were free to attend as many
sessions as needed.

An important principle in our approach is that actual programming starts
as early as possible. The first exercise session time was right after the starting
lecture of the course. For the first week the students already had 30 small
exercises to solve. Due to the guidance available, even those with no previous
experience in programming managed well.

In order to enforce good programming habits such as principles of Clean
Code [9], students had to have their finished solutions accepted by the instruc-
tors. If an instructor noticed a flaw in the approach (bad naming or indentation,
too long methods, classes with to many responsibilities, too complex solution
logic for the problem, etc.), he pointed it out, and the student had to redo
parts of the exercise. In general, we allowed no compromises in the solutions of
students. This way, each student refined their solutions to the point where the
solutions could be regarded as "model answers".

Continuous Feedback

During the course we implemented continuous feedback to provide fast eval-
uation and a continuous feeling of progress for the students. During the exercise
sessions students received positive reinforcement from the instructors.

If a student did not have specific questions during the exercise session, the
instructors were active in making sure (in a non-intrusive fashion) that they were
working towards the right direction with good working habits. If something to
correct was noticed, the instructor nudged the student to the right direction by
asking a question about the approach or by providing constructive feedback.
This was the key continuous feedback as the hints received during the learn-
ing process are essential for acquiring good programming and problem-solving
habits. Instructors were not allowed to give direct solutions to the exercises,
and the key idea was to support the students so that they could figure out the
solutions themselves.

In addition to instructor feedback, students had their completed exercises
marked down to a check-list, allowing them to see the check-list filling with
marked exercises. We feel that the list played an important role in feedback;
every check was a small victory. Check-lists were also updated to the course
web-page at the end of every day, allowing students to see the progress of other
students as well.

The final exams both in Spring and Fall 2010 were constructed to be as
similar as possible to the usual programming exams conducted at our univer-
sity to provide meaningful comparison of the course results. The exams were
programming on paper. A student had to get 50 % of the total maximum score
in order to pass the course, regardless of the number of exercises finished in the
XA scaffolding.

4 Results

4.1 Incremental validation of Extreme Apprenticeship

The introductory programming courses at the Department of Computer Science,
University of Helsinki are taught during both fall and spring semesters. Fall
semesters consist mostly of CS majors, while Spring semesters consist mostly of
CS minors.

Before Spring 2010 both the programming courses have followed very tradi-
tional teaching model based on lecturing and take-home exercises with weekly
exercise sessions. The first course implementing Extreme Apprenticeship method
was held during Spring semester 2010.

Next we will compare the outcome of the Extreme Apprenticeship-based
courses to the previous course instances from past 8 years in terms of percentage
of passed students. The results are reported separately in the tables below
for Introduction to programming and Advanced programming. The XA-based
implementations are highlighted in bold face. The column titled n denotes the

number of students in each course. The numbers are comparable for all the
course implementations as the exams have been alike.

Introduction to Advanced
Programming Programming

n passed n passed
s02 | 92 38.0 % s02 | 88 26.1 %
f02 | 332 53.6 % 02 | 249 | 56.2 %
s03 | 98 39.8 % s03 | 65 30.8 %
f03 | 261 64.0 % f03 | 228 | 59.2 %
s04 | 84 61.9 % s04 | 66 43.9 %
f04 | 211 | 59.2 % f04 | 177 | 66.1 %
s05 | 112 46.4 % s05 | 70 571 %
f05 | 146 54.1 % f05 | 125 | 56.0 %
s06 | 105 41.9 % s06 | 52 44.2 %
fo6 | 182 65.4 % f06 | 147 | 67.3 %
s07 | 84 53.6 % s07 | 53 58.5 %
f07 | 162 53.0 % f07 | 136 | 59.6 %
s08 | 72 58.3 % s08 | 29 51.7 %
fo8 | 164 56.1 % f08 | 147 | 56.5 %
s09 | 53 47.7 % s09 | 22 50.0 %
f09 | 140 64.3 % f09 | 121 | 60.3 %
s10 | 67 70.1 % s10 | 44 | 86.4 %
f10 | 192 | 71.3 % f10 | 147 | 77.6 %

The long-term average (excluding Spring and Fall 2010) for passed students
in Fall semesters is 58.5% and in Spring semesters 43.7%. In Spring terms, most
of the participants are computer science minors. As can be seen, the result in
Spring 2010 was higher than it has previously been, 70.1% , the second highest
pass-rate being 65.4%. In Fall 2010 it was 71.3%, which was even better than
the results from the first XA implementation in Spring 2010.

The pass-rate from Spring and Fall 2010 are approximately the same: 70.1%
and 71.3%. Previous course instances have had a clear long-term difference in
the failure rates between Fall and Spring semesters, which we do not observe
in the XA-based courses. One explanation is the start-early approach: early
success brings motivation.

The trend in the Advanced programming course is similar: the average pass-
ing percentage in Fall terms is 60.1% and Spring terms 45.3%, both marginally
higher than the pass-percentages for the introductory course. This can be ex-
plained by the fact that students failing the Introductory course do not take
part in Advanced programming.

The acceptance percentage in Spring 2010 was 86.4%, an all-time high in
the department with a clear margin. The most natural explanation for the re-
markably high passing rate is that the programming routine built during normal
course implementations has been quite fragile for an average or below-average
student. In an XA-based course, those students who survived from the initial

shock of Introduction to Programming were improving all the time.

In Fall 2010, Advanced programming course pass-rate continued on a re-
markably high level: 77.6%. Although not as high as expected, it is signifi-
cantly higher than the average in previous, traditional Advanced programming
courses. The reasons for less-than-expected increase in pass-rate are discussed
in the next section.

4.2 Teacher-independence in Extreme Apprenticeship

Instructors spend a lot of time together in the labs and in informal interaction
networks (mainly IRC and face-to-face discussions). In a way, this interaction
means that instructors are mentoring each other. We observed that new in-
structors — invited to serve as instructors — were ready to scaffold without any
training. Invitation was considered an honor.

Dynamic, on-demand allocation of instructors and the interaction between
them brought implicit roles among them. This was evident during the courses
when the responsibilities and time spent in the labs for less-experienced instruc-
tors faded towards the end, while more experienced stepped up. The same was
true for all the courses in Spring 2010 and Fall 2010, even though the number
of instructors was scaled up nearly threefold.

Although the result was very good (77.6%) when compared to the previous
courses, it did not match our high expectations based on the experiences from
Spring 2010 course (86.4%). The results were perplexing particularly since many
of the instructors were the same for Spring and Fall 2010, thus having more
experience in scaffolding. Moreover, in Fall 2010 the lecturer was one of the
most lauded teachers at the whole university, having decades of experience in
lecturing CS1-type programming courses.

This led to an investigation in the exercises and course material. The ulti-
mate control (and thus the ultimate responsibility) over the course was handled
by a lecturer not participating or involving himself in XA-style scaffolding in
the computer labs. The lecturer’s responsibilities covered generating the exer-
cises as well. Even though the lecturer received the exercises and material from
the Spring 2010 course, it seems that the importance of XA-style exercises was
not fully conveyed to the lecturer — the exercises need to be relevant and there
must be enough exercises for students to do. Introduction to Programming in
Fall 2010 followed mostly the exercise sets from Spring 2010, but the exercises
in Advanced programming in Fall 2010 converged towards a more traditional
course implementation. The lecturer argued that the exercises and their con-
tents are too demanding for the course. Therefore, he chose to use quite a bit
of his old material instead, and reduced the number of mandatory exercises.
For example, the first week of Advanced programming in Spring 2010 had 34
exercises, while the corresponding week in Fall had 11 exercises. The trend was
similar throughout the whole Advanced programming course.

In Spring 2010, the number of required exercises was much higher than in
Fall 2010. It is easy to see from the weekly accumulated data that the students

stop challenging themselves if the course structures are not encouraging them
continue.

When we reflect the activities during the Advanced programming course in
Fall 2010, we can identify which XA practices were overlooked in: (2) Topics
covered in the lectures were not always relevant for the exercises; (7) The number
of required exercises was not high enough; (8) Exercises did not provide clear
guidelines, i.e. starting points and structures. In short, part of the exercises
were not XA.

As the effect of lecturing is small (many did skip the lectures), the problems
with practices 7 and 8 are far more serious. Nevertheless, the sole reason for all
the problems mentioned above was the lack of bi-directional flow of information
between every participant in the process. Instructors scaffolding in computer
labs received implicit and explicit feedback directly from the students and the
challenges they faced. The lecturer, not present in scaffolding, did not receive
explicit feedback from the labs. In this context, explicit feedback means that
the lecturer did not directly observe how the students coped with the exercises,
and their need for more meaningful and demanding exercises.

4.3 Scalability of Extreme Apprenticeship

XA-style instruction can potentially be overly expensive. We purposefully aimed
not to spend more than in our traditional, lecture-driven, guidance-deprived
teaching model. On-demand service was ensured by using IRC. On situations
where there were too many students, the instructor could ask for extra assistance
on-line. The communication tool worked also as a fast way to help and share
information on problems that a specific instructor himself had faced earlier —
similarly the instructors were able ask for tips on problems they could not help to
solve. Self-organization and openness was important, as the mentors themselves
handled the laboratories, and it was important to also share the problems with
the group.

For bookkeeping of student exercises and allocation of instructors, we utilized
online spreadsheets in Google Docs with our own macros. Each instructor was
required to mark down the hours at the end of the day, which allowed us to keep
track of the money spent so far and the demand for instructors during specific
times. We extended our spreadsheet so that it created automatic predictions
for the upcoming week based on the previous week. This allowed us to focus
resource allocation for rush hours, and on the other hand we were also able to
re-assign instructors from not-so-crowded hours. In the end, the price tag for
the courses was indeed relatively the same as it has been over the past years.

5 Conclusions

Extreme Apprenticeship provides a solid structure for teaching skills that aim to
build good routines and learning best practices from those who already master
them. Emphasizing scaffolding in combination with the core values and the

derived practices yields excellent learning results as was seen already in our
initial implementations in Spring 2010. The excellent results were repeated in
Fall 2010 with three-fold increase in student population.

XA strives to be a method for organizing teaching regardless of personal
traits. We examined this aspect of XA by implementing the second cycle of pro-
gramming courses with XA-style scaffolding under a traditional lecture course.
The lecturer was informed about XA and its values and practices but chose not
to be involved in scaffolding in the computer labs.

Even though the results for the latest course (Advanced programming) using
XA were very good, they were clearly below what was expected. An inspection
revealed that important XA-practices were overlooked, due to lack of observed
feedback from the labs. Therefore, the approach used in Advanced program-
ming course held in Fall 2010 is an example of an Fxtreme Apprenticeship But
method, as in "We used Extreme Apprenticeship, but..". We believe that the
ideas behind the Extreme Apprenticeship method — especially continuous bi-
directional feedback and scaffolding — should be followed vigorously in order to
provide enough support to help novices, struggling to learn programming, to
become truly professional programmers.

Anonymous student feedback collected at the end of the courses showed
clearly that the students truly valued the XA-style scaffolding. The most con-
vincing evidence came from students that had tried to pass the course earlier in
its traditional form, and now received the "XA-experience".

The outcomes from our initial experiments have led us to believe that the role
of the lectures in a programming education clearly diminishes if the exercises are
properly designed and there is personal support when trying to complete them.
Personal support does not need to be overwhelming; instead, even few minutes
spent well to nudge a student into right direction by an instructor who is not
afraid to confront the student at his or her own level makes a huge difference.

6 Acknowledgments

We acknowledge all the journeymen who have contributed to CS1 education at
Helsinki University by helping out in labs and by spreading the good word on
joy of programming. Especially, we would like to thank Thomas “Wilhelmsson”
Vikberg, who has prototyped XA at the department of Mathematics and Statis-
tics during Spring 2011, and shown that XA is applicable to other domains as
well.

References

[1] O. Astrachan and D. Reed. AAA and CS 1: the applied apprentice-
ship approach to CS 1. In SIGCSE ’95: Proceedings of the twenty-sizth
SIGCSE technical symposium on Computer science education, pages 1-5.
ACM, 1995.

10

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

T. R. Black. Helping novice programming students succeed. J. Comput.
Small Coll., 22(2):109-114, 2006.

R. E. Bruhn and P. J. Burton. An approach to teaching java using com-
puters. SIGCSE Bull., 35(4):94-99, 2003.

M. E. Caspersen and J. Bennedsen. Instructional design of a programming
course: a learning theoretic approach. In ICER ’07: Proceedings of the third
international workshop on Computing education research, pages 111-122.
ACM, 2007.

A. Collins, J. Brown, and S. Newman. Cognitive apprenticeship: Teaching
the craft of reading, writing and mathematics. In Knowing, Learning and
Instruction: Essays in honor of Robert Glaser. Hillside, 1989.

A. Collins, J. S. Brown, and A. Holum. Cognitive apprenticeship: making
thinking visible. American Educator, 6:38—46, 1991.

P. A. Kirschner, J. Sweller, and R. E. Clark. Why minimal guidance dur-
ing instruction does not work: An analysis of the failure of constructivist,
problem-based, experiental, and inquiry-based teaching. Educational Psy-
chologist, 41(2):75-86, 2006.

M. Kélling and D. J. Barnes. Enhancing apprentice-based learning of java.
In SIGCSE °0/4: Proceedings of the 35th SIGCSE technical symposium on
Computer science education, pages 286-290. ACM, 2004.

R. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008.

A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson. A survey of literature on the teaching of
introductory programming. In ITiCSE-WGR °07: Working group reports

on ITiCSE on Innovation and technology in computer science education,
pages 204-223. ACM, 2007.

A. Robins, J. Rountree, and N. Rountree. Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13:137-172,
2003.

H. Roumani. Design guidelines for the lab component of objects-first csl.
In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 222-226. ACM, 2002.

J. C. Spohrer and E. Soloway. Novice mistakes: are the folk wisdoms
correct? Commun. ACM, 29(7):624-632, 1986.

A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprenticeship
method in teaching programming for beginners. In SIGCSE ’11: Pro-
ceedings of the 42nd SIGCSE technical symposium on Computer science
education, 2011.

11

[15] L. S. Vygotsky. Mind in Society: The Development of Higher Psychological
Processes. Harvard University Press, Cambridge, MA, 1978.

[16] L. Winslow. Programming psychology - a psychological overview. SIGCSE
Bulletin, 27:17-22, 1996.

12

