

Chapter 2:

Distributed Systems:

Interprocess communication

Fall 2012

Sini Ruohomaa

Slides joint work with Jussi Kangasharju et al.

2 Ruohomaa et al.: Distributed Systems

Chapter Outline

 Overview of interprocess communication

 Remote invocations (RPC etc.)

 Persistence and synchronicity

3 Ruohomaa et al.: Distributed Systems

Middleware Protocols

An adapted reference model for networked communication.

General purpose services

-Naming, “browsing”

-Security

-Atomicity

-Higher-level communication

-RPC, RMI

-Message passing

-Reliable multicast

4 Ruohomaa et al.: Distributed Systems

Remote Procedure Calls

 Basic idea:

 “passive” routines

 Available for remote clients

 Executed by a local worker process, invoked by local infrastructure

 See examples in book

5 Ruohomaa et al.: Distributed Systems

RPC goals

 Achieve access transparent procedure call

 Cannot fully imitate local calls:

 Naming, failures, performance

 Global variables, context dependent variables, pointers

 Call-by-reference vs. call-by-value

 Call semantics

 Maybe, at-least-once, at-most-once

 Exception delivery

 Can be enhanced with other properties

 Asynchronous RPC

 Multicast, broadcast

 Location transparency, migration transparency, …

 Concurrent processing

6 Ruohomaa et al.: Distributed Systems

RPC: a Schematic View

FNCT(a,b)

c:={comp}

return c.

Thread P

…

Y=FNCT(X,Y)

…

X, Y, Z

System A System B

RPC
package

RPC
package

a:=X; b:=Y;

Y

Y=FNCT(X,Y)

7 Ruohomaa et al.: Distributed Systems

Implementation of RPC

 RPC components:

 RPC Service (two stubs)

- interpretation of the service interface

- packing of parameters for transportation

 Transportation service: node to node

- responsible for message passing

- part of the operating system

 Name service: look up, binding

 name of procedure, interface definition

8 Ruohomaa et al.: Distributed Systems

Passing Value Parameters

Steps involved in doing remote computation through RPC

9 Ruohomaa et al.: Distributed Systems

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

10 Ruohomaa et al.: Distributed Systems

Binding a Client to a Server

Example: Client-to-server binding in DCE.

11 Ruohomaa et al.: Distributed Systems

Implementation of RPC

 Server: who will execute the procedure?

 One server process

 infinite loop, waiting in “receive”

 call arrives : the process starts to execute

 one call at a time, no mutual exclusion problems

 A process is created to execute the procedure

 parallelism possible

 overhead

 mutual exclusion problems to be solved

 One process, a set of thread skeletons:

 one thread allocated for each call

12 Ruohomaa et al.: Distributed Systems

Design Issues

 Language independent interface definition

 Exception handling

 Delivery guarantees

 RPC / RMI semantics

 maybe

 at-least-once

 at-most-once

 (un-achievable: exactly-once)

 Transparency (algorithmic vs. behavioral)

13 Ruohomaa et al.: Distributed Systems

RPC: Types of failures

 Client unable to locate server

 Request message lost

 retransmit a fixed number of times

 Server crashes after receiving a request or reply message lost

(cannot be told apart!)

 Client resubmits request, server chooses:

- Re-execute procedure: service should be idempotent

- Filter duplicates: server should hold on to results until

acknowledged

 Client crashes after sending a request

 Orphan detection: reincarnations, expirations

 Reporting failures breaks transparency

14 Ruohomaa et al.: Distributed Systems

Fault tolerance measures

at-most-
once

retransmit
reply

yes yes

at-least-
once

re-execute no yes

maybe N/A N/A no

Invocation
semantics

Re-execute/
retransmit

Duplicate

filtering

Retransmit

request

15 Ruohomaa et al.: Distributed Systems

Reliable Client-Server Communication

1. Point-to-Point Communication (“reliable”)

• masked: omission, value

• not masked: crash, (timing)

2. Recall the RPC failure classes:

• the client unable to locate the server

• a message is lost (request / reply)

• the server crashes (before / during / after service)

• the client crashes

16 Ruohomaa et al.: Distributed Systems

Server Crashes

A server in client-server communication
a) Normal case
b) Crash after execution
c) Crash before execution

17
Ruohomaa et al.: Distributed Systems

 Different combinations of client and server strategies in the presence of
server crashes (client hears of crash, decides: reissue request / not?)

 M: send the completion message OK = Text printed once
 P: tell printer to print text DUP = Text printed twice
 C: crash ZERO = Text not printed
 ACK: Receipt of the completion message

Client Printer Server (“print queue”)

Strategy: Message client, then Print Strategy: Print, then Message

Client’s request reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)

Always (at-least-once semantics) DUP OK OK DUP DUP OK

Never (maybe semantics) OK ZERO ZERO OK OK ZERO

Only when not ACKed (depends) OK ZERO OK OK DUP OK

Only when ACKed (madness!) DUP OK ZERO DUP OK ZERO

E.g.: Printer server crashes (Fig. 8-8)

18 Ruohomaa et al.: Distributed Systems

Client Crashes: No one there to receive a reply

 Orphan: an active computation looking for a non-existing parent

 Solutions

 extermination: the client stub records all calls,

after reboot any orphans on record are explicitly killed

 reincarnation: time is divided into epochs, client reboot =>

broadcast “new epoch” => servers kill the client’s old requests

 gentle incarnation: “new epoch” => look for parents, kill real orphans

 expiration: a “time-to-live” for each RPC (+ possibility to request for

a further time slice)

 New problems: grandorphans, reserved locks, entries in remote

queues, ….

19 Ruohomaa et al.: Distributed Systems

Persistence and Synchronicity in Communication

 General organization of a communication system in which hosts are connected through a network

20 Ruohomaa et al.: Distributed Systems

Persistent vs. Transient Communication

 Persistent communication

 A submitted message is stored in the system until delivered

to the receiver

 (the receiver may start later, the sender may stop earlier)

 Transient communication

 A message is stored only as long as the sending and

receiving applications are executing

 (the sender and the receiver must be executing in parallel)

21 Ruohomaa et al.: Distributed Systems

Persistent Communication – Pony Express Style

Persistent communication of letters back in the days of the Pony Express.

22 Ruohomaa et al.: Distributed Systems

Sychronous and Asynchronous

Communication

 Asynchronous communication

 the sender continues immediately after submission;

something else takes care of the rest

 Synchronous communication

 the sender is blocked until

- the message is received by e.g. middleware to deliver to

target application (receipt-based synchrony)

- the message is delivered to the target (delivery based)

- the response to it has arrived (response based)

23 Ruohomaa et al.: Distributed Systems

Persistence and Synchronicity in Communication

a) Persistent asynchronous communication

b) Persistent (delivery-based) synchronous communication

24 Ruohomaa et al.: Distributed Systems

Persistence and Synchronicity in Communication

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

25 Ruohomaa et al.: Distributed Systems

Persistence and Synchronicity in Communication

e) Delivery-based transient synchronous communication at message delivery
f) Response-based transient synchronous communication

26

Chapter Summary

 Overview of interprocess communication

 Remote invocations (RPC etc.)

 Persistence and synchronicity

Ruohomaa et al.: Distributed Systems

