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Time and Clocks 

NOTE: Time is monotonous 

Real time (17:30:21) Universal time 

(Network time) 

Interval length (3 ms) Computer clock 

Order of events (1.,2.) Network time 

(Universal time) 

What we need? How to solve? 
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Measuring Time 

 Traditionally time measured astronomically 

 Transit of the sun (highest point in the sky) 

 Solar day and solar second 

 Problem: Earth’s rotation is slowing down 

 Days get longer and longer – time units change..? 

 300 million years ago there were 400 days in the year ;-) 

 Modern way to measure time is the atomic clock 

 Based on transitions in Cesium-133 atom 

 Still need to correct for Earth’s rotation 

 Result: Universal Coordinated Time (UTC) 

 UTC available via radio signal, telephone line, satellite 

(GPS) 
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Hardware/Software Clocks 

 Physical clocks in computers are realized as crystal 

oscillation counters at the hardware level 

 Correspond to counter register H(t) 

 Used to generate interrupts 

 Usually scaled to approximate physical time t, yielding 

software clock C(t), C(t) = H(t) +    

 C(t) measures time relative to some reference event, e.g., 

64 bit counter for # of nanoseconds since last boot  

 Simplification: C(t) carries an approximation of real time 

 Ideally, C(t) = t (never 100% achieved) 

 Note: Values given by two consecutive clock queries will 

differ only if clock resolution is sufficiently smaller than 

processor cycle time 
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Problems with Hardware/Software Clocks 

 Skew: Disagreement in the reading of two clocks 

 Drift: Difference in the rate at which two clocks count the 

time 

 Due to physical differences in crystals, plus heat, humidity, 

voltage, etc. 

 Accumulated drift can lead to significant skew 

 Clock drift rate: Difference in precision between a prefect 

reference clock and a physical clock, 

 Usually, 10-6 sec/sec, 10-7 to 10-8 for high precision clocks 

Ruohomaa et al.: Distributed Systems 
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Skew between computer clocks in a 

distributed system 

Network



8 Ruohomaa et al.: Distributed Systems 

Clock Synchronization 

    When each machine has its own clock, an event that occurred after another 

event may end up with an earlier timestamp. 
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Clock Synchronization Problem 

    The relation between clock time and UTC when clocks tick at different rates. 

At drift rate of 10-6  

1 ms  ~ 17 min  

1 s ~ 11.6 days 

UTC: coordinated 

universal time 

accuracy:        
radio   0.1 – 10 ms,        

GPS    1 us 
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Synchronizing Clocks 

 External synchronization 

 Synchronize process’s clock with an authoritative external 

reference clock S(t) by limiting skew to a delay bound D > 0 

- |S(t) - Ci(t) | < D for all t 

 For example, synchronization with a UTC source 

 Internal synchronization 

 Synchronize the local clocks within a distributed system to 

disagree by not more than a delay bound D > 0, without 

necessarily achieving external synchronization 

- |Ci(t) - Cj(t)| < D for all i, j, t 

 Corollary:  

 For a system with external synchronization bound of D, the 

internal synchronization is bounded by 2D 
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Clock Correctness 

 When is a clock correct? 

1. If drift rate falls within a bound r > 0, then for any t and t’ 

with t’ > t the following error bound in measuring t and t’ 

holds: 

 (1-r)(t’-t)  H(t’) - H(t)  (1+r)(t’-t) 

 Consequence: No jumps in hardware clocks allowed 

2. Sometimes monotonically increasing clock is enough: 

 t’ > t  C(t’) > C(t) 

3. Frequently used condition: 

 Monotonically increasing 

 Drift rate bounded between synchronization points 

 Clock may jump ahead at synchronization points 
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Synchronization of Clocks: Software-Based 

Solutions 

 Techniques:  

 time stamps of real-time clocks  

 message passing  

 round-trip time (local measurement) 

 Cristian’s algorithm – ask centralized clock 

 Berkeley algorithm – synchronized within a group 

 NTP: Network time protocol (Internet) 
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Christian’s Algorithm (1/3) 

 Observations 
 Round trip times between processes are often reasonably 

short in practice, yet theoretically unbounded 
 Practical estimate possible if round-trip times are sufficiently 

short in comparison to required accuracy 

 Principle 
 Use UTC-synchronized time server S 
 Process P sends requests to S 
 Measures round-trip time Tround  

- In LAN, Tround should be around 1-10 ms 
- During this time, a clock with a 10-6 sec/sec drift rate 

varies by at most 10-8 sec 
- Hence the estimate of Tround is reasonably accurate 

 Naive estimate: Set clock to t + ½Tround 
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Cristian's Algorithm 

Current time from a time server: UTC from radio/satellite etc 
Problems:  
 - time must never run backward 
 - variable delays in message passing / delivery 
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Christian’s Algorithm: Analysis (3/3) 

 Accuracy of estimate? 

 Assumptions:  

 requests and replies via same net 

 min delay is either known or can be estimated conservatively 

 Calculation: 

 Earliest time that S can have sent reply: t0 + min 

 Latest time that S can have sent reply: t0 + Tround – min 

 Total time range for answer: Tround - 2 * min 

 Accuracy is  (½Tround - min) 

 Discussion 

 Really only suitable for LAN environment or Intranet 

 Problem of failure of S 
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Alternative Algorithm: Berkeley algorithm (1/2) 

 Berkeley algorithm (Gusella&Zatti ‘89) 

 No external synchronization, but one master server 

 Master polls slaves periodically about their clock readings 

 Estimate of local clock times using round trip estimation 

 Averages the values obtained from a group of processes  

- Cancels out individual clock’s tendencies to run fast 

 Tells slave processes by which amount of time to adjust 

local clock 

 Master failure: Master election algorithm (see later) 

 Experiment 

 15 computers, local drift rate < 2x10-5, max round-trip 10 ms 

 Clocks were synchronized to within 20-25 ms 

 Note: Neither algorithm is really suitable for Internet 
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The Berkeley Algorithm (2/2) 

a) The time daemon asks all the other machines for their clock values 

b) The machines answer 

c) The time daemon tells everyone how to adjust their clock 
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Clock Synchronization: NTP (1/6) 

 Goals 

 ability to externally synchronize clients via Internet to UTC 

 provide reliable service tolerating lengthy losses of 

connectivity 

 enable clients to resynchronize sufficiently frequently to 

offset typical HW drift rates 

 provide protection against interference 

 Synchronization subnets 

Ruohomaa et al.: Distributed Systems 

UTC strata 1 

strata 2 

strata 3 

(user workstations) 

1 

2 

3 

2 

3 3 
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NTP Basic Idea 

 Layered client-server architecture, based on UDP 

message passing 

 Synchronization at clients with higher strata number less 

accurate due to increased latency to strata 1 time server 

 Failure robustness: if a strata 1 server fails, it may 

become a strata 2 server that is being synchronized 

though another strata 1 server 

Ruohomaa et al.: Distributed Systems 
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NTP Modes 

 Multicast:  

 One computer periodically multicasts time info to all other 

computers on network 

 These adjust clock assuming a very small transmission delay 

 Only suitable for high speed LANs; yields low but usually 

acceptable sync. 

 Procedure-call: similar to Christian’s protocol 

 Server accepts requests from clients 

 Applicable where higher accuracy is needed, or where multicast is 

not supported by the network’s hard- and software 

 Symmetric:  

 Used where high accuracy is needed 

Ruohomaa et al.: Distributed Systems 
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Procedure-Call and Symmetric Modes 

 All messages carry timing history information 

 local timestamps of send and receive of the previous NTP message 

 local timestamp of send of this message 

 

 

 

 

 

 For each pair i of messages (m, m’) exchanged between two servers 

the following values are being computed 

(based on 3 values carried w/ msg and 4th value obtained via local timestamp): 

- offset oi: estimate for the actual offset between two clocks 

- delay di: true total transmission time for the pair of messages 

<Ti-3, Ti-2, Ti-1, m’ > 

i 

i - T i 

T i-1 T -2 

T 3 

Server B 

Server A 

Time 

m m' 

Time 
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NTP: Delay and Offset 

Let o the true offset of B’s clock relative to A’s clock, and  let t and t’ 

the true transmission times of m and m’ (Ti, Ti-1 ... are not true time) 

Delay 

Ti-2 = Ti-3 + t + o   (1)  and Ti = Ti-1 + t’ – o   (2) which leads to  

di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 (clock errors zeroed out  (almost) true d) 

Offset 

oi = ½ (Ti-2 – Ti-3 + Ti-1 – Ti) (only an estimate) 

i 

i - T i 

T i-1 T -2 

T 3 

Server B 

Server A 

Time 

m m' 

Time 
 

+o 
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NTP Implementation 

 Statistical algorithms based on 8 most recent <oi, di> 

pairs:  determine quality of estimates 

 The value of oi that corresponds to the minimum di is 

chosen as an estimate for o 

 Time server communicates with multiple peers, eliminates 

peers with unreliable data, favors peers with higher strata 

number (e.g., for primary synchronization partner 

selection) 

 NTP phase lock loop model: modify local clock in 

accordance with observed drift rate 

 Experiments achieve synchronization accuracies of  

10 msecs over Internet, and 1 msec on LAN using NTP 

Ruohomaa et al.: Distributed Systems 
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Clocks and Synchronization 

Requirements: 

 ”causality”: real-time order ~ timestamp order  (”behavioral 

correctness” – seen by the user) 

 groups / replicates: all members see the events in the same 

order  

 ”multiple-copy-updates”: order of updates, consistency 

conflicts? 

 serializability of transactions: bases on a common 

understanding of transaction order 

A perfect physical clock is sufficient! 

A perfect physical clock is impossible to implement! 

Above requirements met with much lighter solutions! 
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Happened-Before Relation  ”a -> b” 

 if a, b are events in the same process, and a occurs before b, then a -> b 

a           b 

a          

                  b 

•  if a is the event of a message being sent, and  

    b is the event of the message being received,  

    then a -> b  

•  a || b if neither a -> b nor b -> a ( a and b are concurrent ) 

Note: if a -> b  and  b -> c  then  a -> c 
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Logical Clocks: Lamport Timestamps 

process pi , event e , clock Li , timestamp Li(e) 

 at pi : before each event Li = Li + 1  

 when pi sends a message m to pj 

1. pi:  ( Li = Li + 1 );  t = Li ;  message = (m, t) ; 

2. pj:  Lj = max(Lj, t);  Lj = Lj + 1;  

3. Lj(receive event) = Lj ; 
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Lamport Clocks: Problems 

1. Timestamps do not specify the order of events 

 e -> e’  =>  L(e) < L(e’)  

BUT 

 L(e) < L(e’) does not imply that e -> e’ 

2. Total ordering 

 problem: define order of e, e’  when  L(e) = L(e’) 

 solution: extended timestamp (Ti, i),  where Ti is Li(e)  

 definition:     (Ti, i) < (Tj, j)   

   if and only if 

                                either  Ti < Tj  

                                or Ti = Tj  and i < j 
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Example: Totally-Ordered Multicasting (1) 

     Updating a replicated database and leaving it in an inconsistent state. 



29 Ruohomaa et al.: Distributed Systems 

Example: Totally-Ordered Multicasting (2) 

Total ordering:  

all receivers (applications) see all messages in the same order 

(which is not necessarily the original sending order) 

Example: multicast operations, group-update operations 
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Example: Totally-Ordered Multicasting (3) 

Guaranteed delivery order 

- new message => HBQ 

 

- when all predecessors have  

   arrived:  message  =>  DQ 

 

- when at the head of DQ: 

   message => application   

   (application: receive …) 

Application 

hold-back queue 

delivery queue 

delivery 

Message passing system 
Algorithms:  

see. Defago et al ACM CS, Dec. 2004 
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30.2 

30.2 

Example: Totally-Ordered Multicasting (4) 

P1 

TS  

Multicast: 
- everybody receives the message (incl. the sender!) 

- messages from one sender are received in the sending order 

- no messages are lost 

P3 

TS  

P2 

TS  

   

27.3 
26.3 31.3 

20.1 

20.1 

30.2 

20.1 

31.2 

31.1 
HBQ 

HBQ 

30.2 

30.2 

Original timestamps 

P1   19 

P2   29 

P3   25 

The key idea 

- the same order in all queues 

- at the head of HBQ:  

  when all ack’s have arrived 

  nobody can pass you 
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Various Orderings 

 Total ordering 

 Causal ordering 

 FIFO (First In First Out) 

    (wrt an individual communication channel) 

   Total and causal ordering are independent: 

neither induces the other;  

   Causal ordering induces FIFO 
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Total, FIFO and Causal Ordering of Multicast Messages 

F3

F 1

F 2

T2

T 1

P 1 P 2 P 3

Time

C3

C 1

C 2

Notice the consistent 

ordering of totally 

ordered messages T1 

and T2, 

 the FIFO-related 

messages F1 and F2 

and the causally 

related messages C1 

and C3 

 – and the otherwise 

arbitrary delivery 

ordering of messages. 
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Vector Timestamps 

Goal:  

timestamps should reflect causal ordering 

L(e) < L(e’) =>  “ e happened before e’ “ 

=> 

Vector clock 
each process Pi maintains a vector Vi : 

1. Vi[i]  is the number of events that have occurred at Pi 

             (the current local time at Pi ) 

2. if Vi[j] = k then Pi  knows about (the first) k events that have 

occurred at Pj   

         (the local time at Pj was k, as Pj sent the last message that  Pi  has 

received from it)  
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Order of Vector Timestamps 

Order of timestamps 

 V = V’   iff  V[ j ] = V’ [ j ]         for all j 

 V ≤ V’   iff  V[ j ] ≤  V’ [ j ]        for all j 

 V < V’   iff  V ≤ V’ and V ≠ V’  

 

Order of events (causal order) 

 e -> e’          =>   V(e) < V(e’) 

 V(e) < V(e’)  =>   e -> e’  

 concurrency:   

         e || e’     if     not V(e) ≤ V(e’)   

                      and  not V(e’) ≤ V(e)  
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Causal Ordering of Multicasts (1) 

Event:  
message sent 

m1 

m2 

m3 

0 

0 

0 

0 

0 

0 
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1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Timestamp [i,j,k] : 

i   messages sent from P   

j   messages sent form Q 

k  messages sent from R 

0 

0 

0 

2 

1 

1 

2 

1 

1 

2 

2 

1 

m4 

m5 

P 

Q 

R 

R:  m1 [100]     m4 [211] 

      m2 [110]     m5 [221] 

      m3 [101] 

m5 [221] vs.  111 m4 [211] vs.  111 
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Causal Ordering of Multicasts (2) 

Use of timestamps in causal multicasting 

  1)  Ps multicast: Vs[s] = Vs[s] + 1 

  2)  Message:  include vt = Vs[*] 

  3)  Each receiving Pr : the message can be delivered when  

 - vt[s] = Vr[s] + 1  (all previous messages from Ps have 

arrived) 

 - for each component k (k≠s):  Vr[k] ≥ vt[k]  

    (Pr has now seen all the messages that Ps had seen    

 when the message was sent) 

   4) When the message from Ps becomes  deliverable at Pr the 

message is inserted into the delivery queue  

(note: the delivery queue preserves causal ordering) 

   5) At delivery: Vr[s] = Vr[s] + 1  

Ruohomaa et al.: Distributed Systems 
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Coordination and Agreement 

Coordination of functionality 

 reservation of resources (distributed mutual exclusion) 

 elections (coordinator, initiator) 

 multicasting 

 distributed transactions 

Pi 

Pi 

Pi Pi 

Pi 

Pi 
X 
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Decision Making 

 Centralized: one coordinator (decision maker) 
 algorithms are simple 
 no fault tolerance (if the coordinator fails) 

 Distributed decision making 
 algorithms tend to become complex  
 may be extremely fault tolerant 
 behaviour, correctness ? 
 assumptions about failure behaviour of the platform ! 

 Centralized role, changing “population of the role” 
 easy: one decision maker at a time 
 challenge: management of the “role population” 
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Mutual Exclusion:  
A Centralized Algorithm (1) 

a) Process 1 asks the coordinator for permission to enter a critical region.  
Permission is granted 

b) Process 2 then asks permission to enter the same critical region.  The 
coordinator does not reply. 

c) When process 1 exits the critical region, it tells the coordinator, which 
then replies to 2 

message passing 
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Mutual Exclusion:  
A Centralized Algorithm (2) 

 Examples of usage 

 a stateless server (e.g., Network File Server) 

 a separate lock server 

 General requirements for mutual exclusion  

1. safety: at most one process may execute in the critical section at 

a time 

2. liveness: requests (enter, exit) eventually succeed (no deadlock, 

no starvation) 

3. fairness (ordering): if the request A happens before the request B 

then A is honored before B 

– Problems:  fault tolerance, performance 
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A Distributed Algorithm (1) 

 The general idea: 

 ask everybody  

 wait for permission from everybody 

Pt 

Pi 
Pl 

Pj 

resource 
Ricart – Agrawala 

? 

   The problem: 
 several simultaneous requests (e.g., Pi and Pj) 
 all members have to agree (everybody: “first Pi then Pj”) 

 
 Assumes total order of messages and up-to-date list of nodes 
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On initialization 
 state := RELEASED;  
To enter the section 
 state := WANTED; 
 T := request’s timestamp;   request processing deferred here 
      Multicast request to all processes;         
 Wait until (number of replies received = (N-1) ); 
 state := HELD; 
 
On receipt of a request <Ti, pi> at pj (i ≠ j) 
 if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi))) 
 then  
  queue request from pi without replying;  
 else  
  reply immediately to pi; 
 end if; 
To exit the critical section 
 state := RELEASED; 
 reply to all queued requests; 

A Distributed Algorithm (2) 



44 Ruohomaa et al.: Distributed Systems 

A Token Ring Algorithm 

Algorithm:  

 - token passing: straightforward 

 - lost token:  1) detection?  2) recovery?  

An unordered group of processes on a network. 

A logical ring constructed in software.  
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Comparison 

A comparison of three mutual exclusion algorithms. 

     

Algorithm 
Messages per 

entry/exit 

Delay before entry (in 

message times) 
Problems 

Centralized 3 2 Coordinator crash 

Distributed 2 ( n – 1 ) 2 ( n – 1 ) Crash of any process 

Token ring 1 to  0 to n – 1 
Lost token, process 

crash 
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Election Algorithms 

 Need:  
 computation: a group of concurrent actors 
 algorithms based on the activity of a special role (coordinator, initiator) 

 election of a coordinator:  initially / after some special event (e.g., the previous 
coordinator has disappeared) 

 Premises: 
 each member of the group {Pi} 

- knows the identities of all other members 
- does not know who is up and who is down 

 all electors use the same algorithm 
 election rule: the member with the highest Pi 

 Several algorithms exist  
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The Bully Algorithm (1) 

 Pi notices: coordinator lost 
1. Pi to {all Pj st Pj>Pi}: ELECTION! 
2. if no one responds  => Pi is the coordinator 
3. some Pj responds => Pj takes over, Pi’s job is done 

 Pi gets an ELECTION! message:  
1. reply OK to the sender 
2. if Pi does not yet participate in an ongoing election: hold 

an election 
 The new coordinator Pk to everybody: “ Pk COORDINATOR” 

 Pi: ongoing election & no “Pk COORDINATOR”:       hold an 

election 

 Pj recovers: hold an election 

 

 (“OK” means “stand down, I’ll take it from here”) 



48 Ruohomaa et al.: Distributed Systems 

The Bully Algorithm (2) 

The bully election algorithm 
a) Process 4 holds an election 
b) Process 5 and 6 respond, telling 4 to stop 
c) Now 5 and 6 each hold an election 
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The Bully Algorithm (3) 

d) Process 6 tells 5 to stop 

e) Process 6 wins and tells everyone 
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A Ring Algorithm (1) 

 Group {Pi} ”fully connected”; but organized as ring for election purposes 
 Pi notices: coordinator lost 

 send  ELECTION(Pi)  to the next P  

 Pj receives  ELECTION(Pi) 
 send ELECTION(Pi, Pj)  to successor 

 . . . 
 Pi receives ELECTION(..., Pi, ...) 

 active_list  = {collect from the message} 
 New coordinator = max id from {active_list} 
 send COORDINATOR(active_list) to the next P (circulate through the ring) 

 
Note: Others can also find the new coordinator by picking the max id from 

the active list. 
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A Ring Algorithm (2) 

Election algorithm using a ring. 
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Global State (1) 

 Needed for: checkpointing, garbage collection, deadlock 

detection, termination, testing 

mngr ? 

•  How to observe the state 
•  states of processes 

•  messages in transfer 

A state:  application-dependent specification 
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Detecting Global Properties 
p 

2 p 
1 

message 

garbage object 

object 

reference 

a. Garbage collection 

p 
2 p 

1 wait-for 

wait-for b. Deadlock 

p 
2 p 

1 

activate 

passive passive c. Termination 
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Distributed Snapshot 

 Each node: history of important events 

 Observer: at each node i 

 time:  the local (logical) clock  ” Ti ”  

 state Si     (history: {event, timestamp}) 

=> system state { Si }  

 A cut: the system state { Si } ”at time T” 

 Requirement:  

 {Si} might have existed  consistent with respect to 

some criterion  

 one possibility: consistent wrt  ” happened-before 

relation ”  
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Ad-hoc State Snaphots 

500e 200e 

450e 250e 

account A account B 

450e 200e 
50 => B => 

channel 

state changes: money transfers A  B 

invariant: A+B = 700 

cut 2 

(inconsistent or) 

 weakly  consistent 

cut 1 

strongly consistent 

 inconsistent 

cut 3 
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Consistent and Inconsistent Cuts 

P1 

P2 

P3 

m1 

m2 

m3 

P1 

P2 

P3 

m1 

m2 

m3 
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m1 m2

p1

p2

Phys ical 

time

Cut C 1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)

x 1= 1 x 1 = 100 x 1 = 105

x 2 = 100 x 2 = 95 x 2 = 90

x 1= 90

Cut C 2

 Cuts and Vector Timestamps  

x1 and x2 change locally 

requirement: |x1- x2|<50  

a ”large” change  (”>9”) =>  

send the new value to the other process 

{Si} system state history: all events  

Cut: all events before the ”cut time” 

event: a change of  the local x 

=> increase the vector clock 
A cut is consistent if, for each event, 

it also contains all the events that 

”happened-before”. 
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Example: Chandy Lamport (1) 

The snapshot algorithm of Chandy and Lamport 
- Assumes point-to-point, order-preserving connections. 

 
a) Process Q receives a marker message (“let’s take a snapshot”) 
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Chandy Lamport (2) 

b) Process Q receives a marker for the first time, so records its local state, and 
sends marker on every outgoing channel 

c) Q records all incoming messages 
d) Q receives a marker for its incoming channel a second time and finishes 

recording the state of this incoming channel 
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Chandy and Lamport’s ‘Snapshot’ Algorithm 

Marker receiving rule for process pi  

On pi’s receipt of a marker message over channel c: 

 if (pi has not yet recorded its state) it 

 records its process state now; 

 records the state of c as the empty set; 

 turns on recording of messages arriving over other incoming channels; 

 else  

  pi records the state of c as the set of messages it has received over c  

 since it saved its state. 

 end if 

Marker sending rule for process pi 

After pi has recorded its state, for each outgoing channel c: 

  pi sends one marker message over c   

 (before it sends any other message over c). 
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Implementation of Snapshot 

point-to-point, order-preserving connections 

Chandy, Lamport 
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Chapter Summary 

 Synchronization 

 

 Clocks 

 

 Logical and vector clocks 

 

 Coordination, elections 
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