
Chapter 3:

Distributed Systems:

Synchronization

Fall 2012

Sini Ruohomaa

Slides joint work with Jussi Kangasharju et al.

2

Chapter Outline

 Clocks and time

 Global state

 Mutual exclusion

 Election algorithms

Ruohomaa et al.: Distributed Systems

3 Ruohomaa et al.: Distributed Systems

Time and Clocks

NOTE: Time is monotonous

Real time (17:30:21) Universal time

(Network time)

Interval length (3 ms) Computer clock

Order of events (1.,2.) Network time

(Universal time)

What we need? How to solve?

4 Ruohomaa et al.: Distributed Systems

Measuring Time

 Traditionally time measured astronomically

 Transit of the sun (highest point in the sky)

 Solar day and solar second

 Problem: Earth’s rotation is slowing down

 Days get longer and longer – time units change..?

 300 million years ago there were 400 days in the year ;-)

 Modern way to measure time is the atomic clock

 Based on transitions in Cesium-133 atom

 Still need to correct for Earth’s rotation

 Result: Universal Coordinated Time (UTC)

 UTC available via radio signal, telephone line, satellite

(GPS)

5 Ruohomaa et al.: Distributed Systems

Hardware/Software Clocks

 Physical clocks in computers are realized as crystal

oscillation counters at the hardware level

 Correspond to counter register H(t)

 Used to generate interrupts

 Usually scaled to approximate physical time t, yielding

software clock C(t), C(t) = H(t) +

 C(t) measures time relative to some reference event, e.g.,

64 bit counter for # of nanoseconds since last boot

 Simplification: C(t) carries an approximation of real time

 Ideally, C(t) = t (never 100% achieved)

 Note: Values given by two consecutive clock queries will

differ only if clock resolution is sufficiently smaller than

processor cycle time

6

Problems with Hardware/Software Clocks

 Skew: Disagreement in the reading of two clocks

 Drift: Difference in the rate at which two clocks count the

time

 Due to physical differences in crystals, plus heat, humidity,

voltage, etc.

 Accumulated drift can lead to significant skew

 Clock drift rate: Difference in precision between a prefect

reference clock and a physical clock,

 Usually, 10-6 sec/sec, 10-7 to 10-8 for high precision clocks

Ruohomaa et al.: Distributed Systems

7 Ruohomaa et al.: Distributed Systems

Skew between computer clocks in a

distributed system

Network

8 Ruohomaa et al.: Distributed Systems

Clock Synchronization

 When each machine has its own clock, an event that occurred after another

event may end up with an earlier timestamp.

9 Ruohomaa et al.: Distributed Systems

Clock Synchronization Problem

 The relation between clock time and UTC when clocks tick at different rates.

At drift rate of 10-6

1 ms ~ 17 min

1 s ~ 11.6 days

UTC: coordinated

universal time

accuracy:
radio 0.1 – 10 ms,

GPS 1 us

10 Ruohomaa et al.: Distributed Systems

Synchronizing Clocks

 External synchronization

 Synchronize process’s clock with an authoritative external

reference clock S(t) by limiting skew to a delay bound D > 0

- |S(t) - Ci(t) | < D for all t

 For example, synchronization with a UTC source

 Internal synchronization

 Synchronize the local clocks within a distributed system to

disagree by not more than a delay bound D > 0, without

necessarily achieving external synchronization

- |Ci(t) - Cj(t)| < D for all i, j, t

 Corollary:

 For a system with external synchronization bound of D, the

internal synchronization is bounded by 2D

11 Ruohomaa et al.: Distributed Systems

Clock Correctness

 When is a clock correct?

1. If drift rate falls within a bound r > 0, then for any t and t’

with t’ > t the following error bound in measuring t and t’

holds:

 (1-r)(t’-t) H(t’) - H(t) (1+r)(t’-t)

 Consequence: No jumps in hardware clocks allowed

2. Sometimes monotonically increasing clock is enough:

 t’ > t C(t’) > C(t)

3. Frequently used condition:

 Monotonically increasing

 Drift rate bounded between synchronization points

 Clock may jump ahead at synchronization points

12 Ruohomaa et al.: Distributed Systems

Synchronization of Clocks: Software-Based

Solutions

 Techniques:

 time stamps of real-time clocks

 message passing

 round-trip time (local measurement)

 Cristian’s algorithm – ask centralized clock

 Berkeley algorithm – synchronized within a group

 NTP: Network time protocol (Internet)

13 Ruohomaa et al.: Distributed Systems

Christian’s Algorithm (1/3)

 Observations
 Round trip times between processes are often reasonably

short in practice, yet theoretically unbounded
 Practical estimate possible if round-trip times are sufficiently

short in comparison to required accuracy

 Principle
 Use UTC-synchronized time server S
 Process P sends requests to S
 Measures round-trip time Tround

- In LAN, Tround should be around 1-10 ms
- During this time, a clock with a 10-6 sec/sec drift rate

varies by at most 10-8 sec
- Hence the estimate of Tround is reasonably accurate

 Naive estimate: Set clock to t + ½Tround

14 Ruohomaa et al.: Distributed Systems

Cristian's Algorithm

Current time from a time server: UTC from radio/satellite etc
Problems:
 - time must never run backward
 - variable delays in message passing / delivery

15 Ruohomaa et al.: Distributed Systems

Christian’s Algorithm: Analysis (3/3)

 Accuracy of estimate?

 Assumptions:

 requests and replies via same net

 min delay is either known or can be estimated conservatively

 Calculation:

 Earliest time that S can have sent reply: t0 + min

 Latest time that S can have sent reply: t0 + Tround – min

 Total time range for answer: Tround - 2 * min

 Accuracy is (½Tround - min)

 Discussion

 Really only suitable for LAN environment or Intranet

 Problem of failure of S

16 Ruohomaa et al.: Distributed Systems

Alternative Algorithm: Berkeley algorithm (1/2)

 Berkeley algorithm (Gusella&Zatti ‘89)

 No external synchronization, but one master server

 Master polls slaves periodically about their clock readings

 Estimate of local clock times using round trip estimation

 Averages the values obtained from a group of processes

- Cancels out individual clock’s tendencies to run fast

 Tells slave processes by which amount of time to adjust

local clock

 Master failure: Master election algorithm (see later)

 Experiment

 15 computers, local drift rate < 2x10-5, max round-trip 10 ms

 Clocks were synchronized to within 20-25 ms

 Note: Neither algorithm is really suitable for Internet

17 Ruohomaa et al.: Distributed Systems

The Berkeley Algorithm (2/2)

a) The time daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock

18

Clock Synchronization: NTP (1/6)

 Goals

 ability to externally synchronize clients via Internet to UTC

 provide reliable service tolerating lengthy losses of

connectivity

 enable clients to resynchronize sufficiently frequently to

offset typical HW drift rates

 provide protection against interference

 Synchronization subnets

Ruohomaa et al.: Distributed Systems

UTC strata 1

strata 2

strata 3

(user workstations)

1

2

3

2

3 3

19

NTP Basic Idea

 Layered client-server architecture, based on UDP

message passing

 Synchronization at clients with higher strata number less

accurate due to increased latency to strata 1 time server

 Failure robustness: if a strata 1 server fails, it may

become a strata 2 server that is being synchronized

though another strata 1 server

Ruohomaa et al.: Distributed Systems

20

NTP Modes

 Multicast:

 One computer periodically multicasts time info to all other

computers on network

 These adjust clock assuming a very small transmission delay

 Only suitable for high speed LANs; yields low but usually

acceptable sync.

 Procedure-call: similar to Christian’s protocol

 Server accepts requests from clients

 Applicable where higher accuracy is needed, or where multicast is

not supported by the network’s hard- and software

 Symmetric:

 Used where high accuracy is needed

Ruohomaa et al.: Distributed Systems

21

Procedure-Call and Symmetric Modes

 All messages carry timing history information

 local timestamps of send and receive of the previous NTP message

 local timestamp of send of this message

 For each pair i of messages (m, m’) exchanged between two servers

the following values are being computed

(based on 3 values carried w/ msg and 4th value obtained via local timestamp):

- offset oi: estimate for the actual offset between two clocks

- delay di: true total transmission time for the pair of messages

<Ti-3, Ti-2, Ti-1, m’ >

i

i - T i

T i-1 T -2

T 3

Server B

Server A

Time

m m'

Time

Ruohomaa et al.: Distributed Systems

22

NTP: Delay and Offset

Let o the true offset of B’s clock relative to A’s clock, and let t and t’

the true transmission times of m and m’ (Ti, Ti-1 ... are not true time)

Delay

Ti-2 = Ti-3 + t + o (1) and Ti = Ti-1 + t’ – o (2) which leads to

di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 (clock errors zeroed out (almost) true d)

Offset

oi = ½ (Ti-2 – Ti-3 + Ti-1 – Ti) (only an estimate)

i

i - T i

T i-1 T -2

T 3

Server B

Server A

Time

m m'

Time

+o

Ruohomaa et al.: Distributed Systems

23

NTP Implementation

 Statistical algorithms based on 8 most recent <oi, di>

pairs: determine quality of estimates

 The value of oi that corresponds to the minimum di is

chosen as an estimate for o

 Time server communicates with multiple peers, eliminates

peers with unreliable data, favors peers with higher strata

number (e.g., for primary synchronization partner

selection)

 NTP phase lock loop model: modify local clock in

accordance with observed drift rate

 Experiments achieve synchronization accuracies of

10 msecs over Internet, and 1 msec on LAN using NTP

Ruohomaa et al.: Distributed Systems

24 Ruohomaa et al.: Distributed Systems

Clocks and Synchronization

Requirements:

 ”causality”: real-time order ~ timestamp order (”behavioral

correctness” – seen by the user)

 groups / replicates: all members see the events in the same

order

 ”multiple-copy-updates”: order of updates, consistency

conflicts?

 serializability of transactions: bases on a common

understanding of transaction order

A perfect physical clock is sufficient!

A perfect physical clock is impossible to implement!

Above requirements met with much lighter solutions!

25 Ruohomaa et al.: Distributed Systems

Happened-Before Relation ”a -> b”

 if a, b are events in the same process, and a occurs before b, then a -> b

a b

a

 b

• if a is the event of a message being sent, and

 b is the event of the message being received,

 then a -> b

• a || b if neither a -> b nor b -> a (a and b are concurrent)

Note: if a -> b and b -> c then a -> c

26 Ruohomaa et al.: Distributed Systems

Logical Clocks: Lamport Timestamps

process pi , event e , clock Li , timestamp Li(e)

 at pi : before each event Li = Li + 1

 when pi sends a message m to pj

1. pi: (Li = Li + 1); t = Li ; message = (m, t) ;

2. pj: Lj = max(Lj, t); Lj = Lj + 1;

3. Lj(receive event) = Lj ;

0 6 12 18 24 30 36 42 48 54 0

0

0

6

8

10

12

16

20

18

24

30

24

32

40

30

40

50

36

48

60

42

56

70

42

61

70

48

69

80

54

77

90

70

77

99

0 8 16 24 32 40 48 56 64 72 24 30

30 40

P1

P2

P3

27 Ruohomaa et al.: Distributed Systems

Lamport Clocks: Problems

1. Timestamps do not specify the order of events

 e -> e’ => L(e) < L(e’)

BUT

 L(e) < L(e’) does not imply that e -> e’

2. Total ordering

 problem: define order of e, e’ when L(e) = L(e’)

 solution: extended timestamp (Ti, i), where Ti is Li(e)

 definition: (Ti, i) < (Tj, j)

 if and only if

 either Ti < Tj

 or Ti = Tj and i < j

28 Ruohomaa et al.: Distributed Systems

Example: Totally-Ordered Multicasting (1)

 Updating a replicated database and leaving it in an inconsistent state.

29 Ruohomaa et al.: Distributed Systems

Example: Totally-Ordered Multicasting (2)

Total ordering:

all receivers (applications) see all messages in the same order

(which is not necessarily the original sending order)

Example: multicast operations, group-update operations

30 Ruohomaa et al.: Distributed Systems

Example: Totally-Ordered Multicasting (3)

Guaranteed delivery order

- new message => HBQ

- when all predecessors have

 arrived: message => DQ

- when at the head of DQ:

 message => application

 (application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system
Algorithms:

see. Defago et al ACM CS, Dec. 2004

31 Ruohomaa et al.: Distributed Systems

30.2

30.2

Example: Totally-Ordered Multicasting (4)

P1

TS

Multicast:
- everybody receives the message (incl. the sender!)

- messages from one sender are received in the sending order

- no messages are lost

P3

TS

P2

TS

27.3
26.3 31.3

20.1

20.1

30.2

20.1

31.2

31.1
HBQ

HBQ

30.2

30.2

Original timestamps

P1 19

P2 29

P3 25

The key idea

- the same order in all queues

- at the head of HBQ:

 when all ack’s have arrived

 nobody can pass you

32 Ruohomaa et al.: Distributed Systems

Various Orderings

 Total ordering

 Causal ordering

 FIFO (First In First Out)

 (wrt an individual communication channel)

 Total and causal ordering are independent:

neither induces the other;

 Causal ordering induces FIFO

33 Ruohomaa et al.: Distributed Systems

Total, FIFO and Causal Ordering of Multicast Messages

F3

F 1

F 2

T2

T 1

P 1 P 2 P 3

Time

C3

C 1

C 2

Notice the consistent

ordering of totally

ordered messages T1

and T2,

 the FIFO-related

messages F1 and F2

and the causally

related messages C1

and C3

 – and the otherwise

arbitrary delivery

ordering of messages.

34 Ruohomaa et al.: Distributed Systems

Vector Timestamps

Goal:

timestamps should reflect causal ordering

L(e) < L(e’) => “ e happened before e’ “

=>

Vector clock
each process Pi maintains a vector Vi :

1. Vi[i] is the number of events that have occurred at Pi

 (the current local time at Pi)

2. if Vi[j] = k then Pi knows about (the first) k events that have

occurred at Pj

 (the local time at Pj was k, as Pj sent the last message that Pi has

received from it)

35 Ruohomaa et al.: Distributed Systems

Order of Vector Timestamps

Order of timestamps

 V = V’ iff V[j] = V’ [j] for all j

 V ≤ V’ iff V[j] ≤ V’ [j] for all j

 V < V’ iff V ≤ V’ and V ≠ V’

Order of events (causal order)

 e -> e’ => V(e) < V(e’)

 V(e) < V(e’) => e -> e’

 concurrency:

 e || e’ if not V(e) ≤ V(e’)

 and not V(e’) ≤ V(e)

36 Ruohomaa et al.: Distributed Systems

Causal Ordering of Multicasts (1)

Event:
message sent

m1

m2

m3

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

1

1

0

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

Timestamp [i,j,k] :

i messages sent from P

j messages sent form Q

k messages sent from R

0

0

0

2

1

1

2

1

1

2

2

1

m4

m5

P

Q

R

R: m1 [100] m4 [211]

 m2 [110] m5 [221]

 m3 [101]

m5 [221] vs. 111 m4 [211] vs. 111

37

Causal Ordering of Multicasts (2)

Use of timestamps in causal multicasting

 1) Ps multicast: Vs[s] = Vs[s] + 1

 2) Message: include vt = Vs[*]

 3) Each receiving Pr : the message can be delivered when

 - vt[s] = Vr[s] + 1 (all previous messages from Ps have

arrived)

 - for each component k (k≠s): Vr[k] ≥ vt[k]

 (Pr has now seen all the messages that Ps had seen

 when the message was sent)

 4) When the message from Ps becomes deliverable at Pr the

message is inserted into the delivery queue

(note: the delivery queue preserves causal ordering)

 5) At delivery: Vr[s] = Vr[s] + 1

Ruohomaa et al.: Distributed Systems

38 Ruohomaa et al.: Distributed Systems

Coordination and Agreement

Coordination of functionality

 reservation of resources (distributed mutual exclusion)

 elections (coordinator, initiator)

 multicasting

 distributed transactions

Pi

Pi

Pi Pi

Pi

Pi
X

39 Ruohomaa et al.: Distributed Systems

Decision Making

 Centralized: one coordinator (decision maker)
 algorithms are simple
 no fault tolerance (if the coordinator fails)

 Distributed decision making
 algorithms tend to become complex
 may be extremely fault tolerant
 behaviour, correctness ?
 assumptions about failure behaviour of the platform !

 Centralized role, changing “population of the role”
 easy: one decision maker at a time
 challenge: management of the “role population”

40 Ruohomaa et al.: Distributed Systems

Mutual Exclusion:
A Centralized Algorithm (1)

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, which
then replies to 2

message passing

41 Ruohomaa et al.: Distributed Systems

Mutual Exclusion:
A Centralized Algorithm (2)

 Examples of usage

 a stateless server (e.g., Network File Server)

 a separate lock server

 General requirements for mutual exclusion

1. safety: at most one process may execute in the critical section at

a time

2. liveness: requests (enter, exit) eventually succeed (no deadlock,

no starvation)

3. fairness (ordering): if the request A happens before the request B

then A is honored before B

– Problems: fault tolerance, performance

42 Ruohomaa et al.: Distributed Systems

A Distributed Algorithm (1)

 The general idea:

 ask everybody

 wait for permission from everybody

Pt

Pi
Pl

Pj

resource
Ricart – Agrawala

?

 The problem:
 several simultaneous requests (e.g., Pi and Pj)
 all members have to agree (everybody: “first Pi then Pj”)

 Assumes total order of messages and up-to-date list of nodes

43 Ruohomaa et al.: Distributed Systems

On initialization
 state := RELEASED;
To enter the section
 state := WANTED;
 T := request’s timestamp; request processing deferred here
 Multicast request to all processes;
 Wait until (number of replies received = (N-1));
 state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
 if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
 then
 queue request from pi without replying;
 else
 reply immediately to pi;
 end if;
To exit the critical section
 state := RELEASED;
 reply to all queued requests;

A Distributed Algorithm (2)

44 Ruohomaa et al.: Distributed Systems

A Token Ring Algorithm

Algorithm:

 - token passing: straightforward

 - lost token: 1) detection? 2) recovery?

An unordered group of processes on a network.

A logical ring constructed in software.

45 Ruohomaa et al.: Distributed Systems

Comparison

A comparison of three mutual exclusion algorithms.

Algorithm
Messages per

entry/exit

Delay before entry (in

message times)
Problems

Centralized 3 2 Coordinator crash

Distributed 2 (n – 1) 2 (n – 1) Crash of any process

Token ring 1 to 0 to n – 1
Lost token, process

crash

46 Ruohomaa et al.: Distributed Systems

Election Algorithms

 Need:
 computation: a group of concurrent actors
 algorithms based on the activity of a special role (coordinator, initiator)

 election of a coordinator: initially / after some special event (e.g., the previous
coordinator has disappeared)

 Premises:
 each member of the group {Pi}

- knows the identities of all other members
- does not know who is up and who is down

 all electors use the same algorithm
 election rule: the member with the highest Pi

 Several algorithms exist

47 Ruohomaa et al.: Distributed Systems

The Bully Algorithm (1)

 Pi notices: coordinator lost
1. Pi to {all Pj st Pj>Pi}: ELECTION!
2. if no one responds => Pi is the coordinator
3. some Pj responds => Pj takes over, Pi’s job is done

 Pi gets an ELECTION! message:
1. reply OK to the sender
2. if Pi does not yet participate in an ongoing election: hold

an election
 The new coordinator Pk to everybody: “ Pk COORDINATOR”

 Pi: ongoing election & no “Pk COORDINATOR”: hold an

election

 Pj recovers: hold an election

 (“OK” means “stand down, I’ll take it from here”)

48 Ruohomaa et al.: Distributed Systems

The Bully Algorithm (2)

The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

49 Ruohomaa et al.: Distributed Systems

The Bully Algorithm (3)

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

50 Ruohomaa et al.: Distributed Systems

A Ring Algorithm (1)

 Group {Pi} ”fully connected”; but organized as ring for election purposes
 Pi notices: coordinator lost

 send ELECTION(Pi) to the next P

 Pj receives ELECTION(Pi)
 send ELECTION(Pi, Pj) to successor

 . . .
 Pi receives ELECTION(..., Pi, ...)

 active_list = {collect from the message}
 New coordinator = max id from {active_list}
 send COORDINATOR(active_list) to the next P (circulate through the ring)

Note: Others can also find the new coordinator by picking the max id from

the active list.

51 Ruohomaa et al.: Distributed Systems

A Ring Algorithm (2)

Election algorithm using a ring.

52 Ruohomaa et al.: Distributed Systems

Global State (1)

 Needed for: checkpointing, garbage collection, deadlock

detection, termination, testing

mngr ?

• How to observe the state
• states of processes

• messages in transfer

A state: application-dependent specification

53 Ruohomaa et al.: Distributed Systems

Detecting Global Properties
p

2 p
1

message

garbage object

object

reference

a. Garbage collection

p
2 p

1 wait-for

wait-for b. Deadlock

p
2 p

1

activate

passive passive c. Termination

54 Ruohomaa et al.: Distributed Systems

Distributed Snapshot

 Each node: history of important events

 Observer: at each node i

 time: the local (logical) clock ” Ti ”

 state Si (history: {event, timestamp})

=> system state { Si }

 A cut: the system state { Si } ”at time T”

 Requirement:

 {Si} might have existed consistent with respect to

some criterion

 one possibility: consistent wrt ” happened-before

relation ”

55 Ruohomaa et al.: Distributed Systems

Ad-hoc State Snaphots

500e 200e

450e 250e

account A account B

450e 200e
50 => B =>

channel

state changes: money transfers A B

invariant: A+B = 700

cut 2

(inconsistent or)

 weakly consistent

cut 1

strongly consistent

 inconsistent

cut 3

56 Ruohomaa et al.: Distributed Systems

Consistent and Inconsistent Cuts

P1

P2

P3

m1

m2

m3

P1

P2

P3

m1

m2

m3

57 Ruohomaa et al.: Distributed Systems

m1 m2

p1

p2

Phys ical

time

Cut C 1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)

x 1= 1 x 1 = 100 x 1 = 105

x 2 = 100 x 2 = 95 x 2 = 90

x 1= 90

Cut C 2

 Cuts and Vector Timestamps

x1 and x2 change locally

requirement: |x1- x2|<50

a ”large” change (”>9”) =>

send the new value to the other process

{Si} system state history: all events

Cut: all events before the ”cut time”

event: a change of the local x

=> increase the vector clock
A cut is consistent if, for each event,

it also contains all the events that

”happened-before”.

58 Ruohomaa et al.: Distributed Systems

Example: Chandy Lamport (1)

The snapshot algorithm of Chandy and Lamport
- Assumes point-to-point, order-preserving connections.

a) Process Q receives a marker message (“let’s take a snapshot”)

59 Ruohomaa et al.: Distributed Systems

Chandy Lamport (2)

b) Process Q receives a marker for the first time, so records its local state, and
sends marker on every outgoing channel

c) Q records all incoming messages
d) Q receives a marker for its incoming channel a second time and finishes

recording the state of this incoming channel

60 Ruohomaa et al.: Distributed Systems

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:

 if (pi has not yet recorded its state) it

 records its process state now;

 records the state of c as the empty set;

 turns on recording of messages arriving over other incoming channels;

 else

 pi records the state of c as the set of messages it has received over c

 since it saved its state.

 end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:

 pi sends one marker message over c

 (before it sends any other message over c).

61 Ruohomaa et al.: Distributed Systems

Implementation of Snapshot

point-to-point, order-preserving connections

Chandy, Lamport

62

Chapter Summary

 Synchronization

 Clocks

 Logical and vector clocks

 Coordination, elections

Ruohomaa et al.: Distributed Systems

