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1 Introduction

MonetDB is an open source relational database management
system designed for data warehouse applications. The high
performance of MonetDB lies in its innovations of all layers,
which are designed to meet the following changes. That is, (i)
traditional relational database management systems (RDBMS)
were designed for the online transaction processing (OLTP)
applications. Such OLTP applications frequently involve a
few rows and many columns of relational tables. Nowadays
in database applications, besides the OLTP applications, the
online analytical processing (OLAP) applications typically
process the multi-dimensional cubes involving several columns
but a large number of rows of relational tables. (ii) The original
assumption of RDBMS was that the disk I/O was treated as
the dominating performance factor. Instead modern hardware
has become orders of magnitude faster but also orders of
magnitude more complex.

The above changes, including the underlying physical hard-
ware and upper application model, lead to the fundamental
innovations [3], [7] of the MonetDB architecture, which are
summarized as follows.

• Column Store: Traditional RDBMS favors a row-wise
fashion for single record lookups. Instead, MonetDB uses
column store for analytical queries of large amount of
data by better using CPU cache lines.

• Bulk query algebra: Monent designs simplified algebra
for much faster implementation on modern hardware.

• Cache-conscious algorithms: due to the limit of memory
size, MonetDB carefully uses the CPU caches for tuning
of memory access patterns and thus designs a new query
processing algorithm (i.e., radix-partitioned hash join).

• Memory access cost modeling: given the new cache-
conscious environment, MonetDB develops a new cost
model for query optimization. In order to work on diverse
modern architecture, the cos model can be parameterized
at runtime using automatic calibration techniques.

Since the seminar is about the column databases, this report
therefore focuses on the design of column store on MonetDB
(and skip the innovations designed for modern hardware), and
introduce an application of MonetDB for Information Retrieval

(IR) searches [5].
The rest of this report is organized as follows. First Section

2 introduces the design of the column store on MonetDB and
then Section 3 gives the application for IR searches. After
that, Section 4 reviews related works, and Section 5 finally
concludes the report.

2 Design of Column Store on MonetDB
2.1 Physical Data Model

Different from traditional database systems, MonetDB does
not store all attributes of each relational tuple (togetherin one
record), and instead treats a relational table as vertical frag-
mentations. Thus, MonetDB stores each column of the table
in a separate (surrogate,value) table, called a BAT (Binary
Association Table). The left column, called head column, is
surrogate or OID (object-identier), and only the right column
stores the actual attribute values (called tail). As a result, a
relation table consisting ofk attributes then is represented
by k BATs. With the help of the system generated OID,
MonetDB needs to lookup thek BATs in order to reconstruct
a tuple. In order to perform tuple reconstructions from thek
BATs, MonetDB adopts a tuple-order alignment across all base
columns. That is, each attribute value belonging to a tuplet
is stored in the same position of the associated BAT.

Fig. 1. Colum Store of MonetDB [3]

Next, to represent the tail column, MonetDB considers two
cases. (i) For fixed-width data type (e.g., integer, decimaland
oating point numbers), MonetDB uses a C-type array. (ii) For
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variable-width data types (e.g., strings), MonetDB adoptsa
dictionary encoding where the distinct values are then store
in Blob and the BAT only stores an integer pointer to the
Blob position. The BATs “name” and “age”’ Fig. 1 illustrate
the BATs with variable-width and fixed-width types of tails,
respectively.

When the data is loaded from disk to main memory,
MonetDB uses the exactly same data structure to represent
such data on disk and in main memory. In addition, MonetDB
adopts a late tuple reconstruction to save the main memory
size. That is, during the entire query evaluation, all interme-
diate data are still the column format (i.e., the integer format
instead of the actual values), and the tuples with actual values
are finally reconstructed before sending the tuples to the client.

We note that the success of the column store is based on
the observation that the column values belonging to the same
attributes are typically the same data types and associatedwith
similar results. Therefore, compression techniques (e.g., the
adopted FOR, PFOR, PFOR-Delta [10]) can help save the
storage size of the BAT (for both fixed-width and variable-
width types). This immediately means that the reduced disk IO
to load the compressed data. In addition, avoiding the load of
all k BATs belonging to a table from disk also helps optimize
the disk IO.

2.2 Execution Model

MonetDB uses an Assembly Language (namely MAL) to
program the kernel. In this way, the N-ary relational algebra
plans are then translated into the BAT algebra and complied
to MAL programs. After that, anoperator-at-a-time manner
is used to evaluate the MAL programs. That is, MonetDB
first evaluates each operation to completion over its entire
input data, and then invokes subsequent data-dependent op-
erations. This manner allows the algebra operators to perform
operational optimization. In detail, based on the entire input
data, MonetDB can choose at runtime the actual algorithm
and implementation to be used for better optimization. For
example, a join operation can at runtime decide to perform a
merge join algorithm if the input data is sorted, or a hash join
otherwise; a selection operation can use a binary search if the
input data is sorted, or use a hash index if available, or fall
back to a scan otherwise.

2.3 MonetDB Architecture

The system architecture of MonetDB is shown in Fig. 2.
First, MonetDB supports the standard operators such as Scan,
ScanSelect, Project, Aggr, TopN, Sort, Join. During the query
evaluation, a pipeline fashion is adopted by using the open(),
next() and close() interfaces. The next() interface directly
returns a collection of vectors (instead of a single row of
tuple), where each of the vectors contains a small horizontal
slice of a single column. This batch result allows the complier
of MonetDB to produce data-parallel code for more efficient
execution on modern CPU. Also, avectorized in-cache fashion
tunes the size of the vector, such that the collection of vectors
needed by a query can fit the CPU cache.

Fig. 2. MonetDB architecture [5]

Next, during the query processing, the ColumnBM buffer
manager, which is based on a column-oriented storage scheme,
avoids reading unnecessary columns from disk for better disk
IO bandwidth utilization.

Finally, the light-weight column compression, such as FOR,
PFOR and PFOR-DELTA, further improves the disk I/O-
bandwidth utilization. Note that the data is decompressed on-
demand, at vector granularity, directly into the CPU cache,
without writing the uncompressed data back to main memory.

3 Applications for IR Searches
Challenges: Information Retrieval (IR) community has at-
tempted to solve IR searches by database queries. However,
there exist two difficulties:

• Inefficiency issue: the current RDBMS implementation
cannot achieve desirable running time or suffers from
poor disk resource usage.

• Inexpressiveness: the current SQL cannot offer rich ab-
straction for the IR search model and explicit representa-
tion of ordered data.

Contributions: To overcome the above difficulties, the journal
paper [5] has proposed the following approaches.

• First, to help solve the inexpressiveness challenge, the pa-
per proposed aMatrix Framework for IR. This framework
mapped IR models to matrix spaces and designed matrix
operations by treating the occurrence of termst ∈ T in
documentsd ∈ D as aT × D matrix. The element in the
matrix then is used to represent the IR score (such as
TF*IDF) of such occurrence..
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• Second, the paper proposed to use sparse arrays for the
implementation of the Matrix Framework on relational
databases, and the proposed approach is designed for
efficient disk resource usage.

• Third, to efficiently answer the IR searches, the paper
adopted an array query optimization technique. This
technique efficiently maps the operations on sparse arrays
(such as function mapping, array re-shaping, aggregation,
top-N) onto relational query plan.

• Next, the proposed compression scheme also improved
the query evaluation performance by optimizing the disk
IO throughput.

• Finally, by the TREC TeraByte track data set, the perfor-
mance of the propose solution outperforms the previous
custom-built IR systems on comparable hardware.

3.1 Sparse relational array mapping (SRAM)

This subsection begins with a very brief introduce the storage
of sparse arrays in a RDBMS and next presents the details of
the SRAM mapping.

The generic approach is to store every sparse array by a
relation and thus the array-cells by tuples. After that, both
the standard relational indexing structures and explicit tuple
clustering/sorting can then optimize the data access.

The SRAM tool is to map (i) sparse arrays to relations
and (ii) array operations to relational expressions. To show
the mapping, we need to know the syntax of the SRAM
itself which defines the following operations over arrays:
direct construction, enumeration construction, array nesting,
aggregations (such as sum, prod, min, max), top-N and macro
functions.

After that, array queries are transformed by the following
steps: (i) from array algebra to relational algebra, and (ii) from
relational algebra to a RDBMS, that are introduced as follow.

The transformation from array algebra to relational algebra
supports the following operations:

1) The Apply operation is the selection of array values by
their array positions. In addition, Pivot, RangeSel, and
Replicate operations can be also implemented by the
Apply operation. Those operations are called Shape-only
array operations.

2) The Map operation between two arrays corresponds to
relational join. Aggregate and top-N are also supported.

3) Simplification rules are considered to simplify the
generic translation of function mapping and aggregation
operations. For example, a redundant expression in the
original Map transformation rule is removed for less
space cost.

4) Arithmetic optimization is helpful to limit the increased
complexity of generic sparse array evaluation. The op-
timization is to identify some common patterns such as
(x ∗ 0) = 0, (x ∗ 1) = x, (x/1) = x, log(1) = 0. Such
identification next activates the above Simplification rule
to removes predictable computations from all translation
rules.

Next, the transformation from relational algebra to a
RDBMS is to express the purely relational query tree (gen-

erated by the above transformation from array algebra to rela-
tional algebra) by the query language offered by the RDBMS
at hand. Note that the transformation itself is trivial and the
key is the optimization of the SQL expressions transformed
from relational algebra. To this end, the paper proposed two
following techniques.

1) Enforcement of integrity constraints: After the two Ar-
rays DT and S are stored as relationsDT (d, t, v) and
S (d, v), the integrity constraints exist on index columns:
(i) DT (d, t) is the primary key of relationDT ; (ii) S (d)
is the primary key of relationS ; and (iii) DT (d) is a
foreign key for the primary keyS (d). The constraints
help improve cardinality estimations.

2) Creating access patterns: SRAM adopts the policy to
sort the tuples of transformed relations on their primary
key. This leads to creating a clustered index for each
of these relations. Such an index improves efficiency
dramatically (e.g., optimized for a MergeJoin algorithm).

3.2 A running example

We consider the following basic BM25 query:

D20 := topN([s(d)|d], 20,DES C)
S 20 := [s(d)|d](D20)

The above query means that the indices of the 20 highest
scored documents are first retrieved from the array [s(d)|d] by
the TopN() construct and materialized as arrayD20. Then,
the scores of those documents are fetched by dereferencing
the array [s(d)|d] with D20.

Based on the MonetDB transformation rules, the above
query is transformed to the following physical query plan:

TopN(
DenseAggr(
Pro ject(
FetchJoin(
FetchJoin(
MergeJoin(S can(Q), T D,T D.termid = Q.termid), T,T.termid = Q.termid),

D,D.docid = T D.docid),
[D.docid, scores = BM25(T D.t f ,D.doclen,T. f td)]),

[score = sum(scores)]),
[scoreDES C], 20)

3.3 Experiments

3.3.1 Experimental Setup

• Data Set: TREC TeraByte track (i.e., the GOV2 collec-
tion) has 25 million web documents, with a total size of
426GB. System efficiency is measured by total execution
time of 50,000 queries, and effectiveness is evaluated by
early precision (p@20) on a subset of 50 preselected
queries. In the experiments, the BM25 formula is used
for IR model to compute the term weight (including term
frequency and inverse document frequency, i.e., tf*idf).

• Backend Database: MonetDB/X100 is used as the exper-
imental database due to two unique properties: i) column-
oriented storage manager that provides transparent light-
weight data compression (i.e., PFOR and PFOR-DELTA
compression algorithm) and ii) vectorized in-cache query
execution to achieve good CPU utilization.
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Fig. 3. Performance comparison with other works [5]

3.3.2 Experimental Results

Fig.3 summarizes the efficiency and precision of MonetDB and
three custom IR engines. All four schemes were performed on
the same hardware with the 2006 TeraByte Track as input data.
This figure indicates that MonetDB results are competitive,
with only slightly less efficiency than Wumpus (117 vs. 91 ms
on cold data), and less precision than Indri (0.561 vs 0.547).
However, Indri suffered from a significant cost in terms of
execution time (117 vs 1,724 ms).

4 Related Work and Discussion

4.1 MIT Column Store [9], [1], [2]

C-Store is the first column store to comprehensively implement
the columnar-oriented database system. It contains writable
store (WS) and read-optimized store (RS), both of which are
implemented by column store. After data is inserted to WS,
the tuple mover (TM) periodically merges the updates to RS.
Designed on a grid computing environment, C-Store supports
transactions which include high availability and snapshotiso-
lation for read-only transactions.

There are differences between C-Store and MonetDB. C-
Store maps a table to projects, and thus allows redundant
columns that appear inside multiple projects. Each column
in the projects is stored with the column-wise storage layout.
Second, the hybrid architecture (i.e., RS/WS/TM components)
in C-Store allow the optimization of both write and read
operations. Finally, high-availability is supported in C-Store.

4.2 Column Store in Microsoft SQL Server 2012 [8]

Microsoft SQL Server is a general-purpose database system
that was designed to store data in row format. The recent
2012 version supports columnar storage (as a column store
index) and efficient batch-at-a-time processing. As a result,
SQL Server 2012 supports an index stored row-wise in a B-tree
or column-wise in a column store index. Next, the batch-at-a-
time processing loads a large number of rows which greatly
reduce CPU time and cache misses on modern processors.
Note that SQL server 2012 supports only a subset of the query
operators such as scan, filter, project, hash (inner) join and
(local) hash aggregation.

When compared with MonetDB which fully supports the
column store, the SQL server 2012 allows only the column
index and it is unclear whether the underlying storage layout
of data values is also designed for the column storage.

4.3 Main-memory Hybrid Column Store[6]

HYRISE [6] is a main memory database system and the key
idea is to automatically partition tables into vertical partitions
of varying widths (depending on the access patterns of the
table columns). That is, the columns involving frequent OLTP-
style queries favor wider partitions (such that such columns
look like the ones in traditional row-based tables. Instead, for
the columns frequently accessed as a part of OLAP analytical
queries, HYRISE creates narrow partitions for such columns
(similar to the column storage of MonetDB).

4.4 Google BigTable [4]

The Google BigTable is designed to scale for petabytes of
structured data and thousands of commodity servers. The data
model of BigTable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is then indexed by a row
key, column key, and a timestamp; each value in the map is
an uninterpreted array of bytes:
(row : string, column : string, time : int64)→ string.

BigTable allows client to group multiple column families
together into alocality group. The locality group is generated
as a separate SSTable (an internal file of BigTable to store
data). For those column families that are not typically accessed
together, BigTable creates separate locality groups for more
efficient read. Moreover, the SSTables for locality groups are
allowable to be compressed for less space cost and higher disk
IO.

Compared with the above column store, BigTable shares
some similarities. For example, locality groups in BigTable
are also similarly optimized with compression for better disk
read performance. Both C-Store and BigTable are designed
for shared-nothing machines. By using two different data
structures, one for recent writes, and one for storing long-lived
data, they both move data from one form to the other. In this
way, they both provide good performance on read-intensive
and write-intensive applications.

In terms of the difference, column stores such as C-store
and MonetDB are designed to provide database-alike APIs;
while BigTable provides only low-level APIs. Moreover, the
locality groups of BigTable do not support CPU- cache-level
optimizations that are used in MonetDB.

4.5 Discussion

Table 1 summarizes the above comparison and discussion.
Furthermore, we discuss the potential weakness and extension
of column store as follows.

Recently, data mining and machine learning techniques are
popularly used in Web searches. Though the column layout
is designed for the data analysis (such as the batch scan,
aggregation), it is unclear how it is used to improve the
efficiency of the data mining and machine learning problems.
For Web documents having a large number of document terms,
such terms correspondingly indicate a larger number attributes.
Though the batch-alike query processing technique can benefit
the scan of a column, how such a technique can significantly
improve the the classic data mining and machine problems
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is unclear. For example, to cluster a set of documents, the
computation of the pairwise similar of documents needs to
process a large number of documents. Such a process involves
the process of the inverted lists associated with a large number
of terms (and thus a large number of columns). The scan
obviously might still suffer from high disk IO caused by the
scan of such a number of columns, although the scan inside
a column still benefits from the column layout.

In addition, nowadays the modern memory capacity be-
comes larger and accommodates a large amount of data. It
is particularly true that many in-memory databases come out
to offer high performance. This partially offsets the benefits
achieved by the column layout. For example, compression
of data can reduce the disk IO. However, if data is inside
the memory, the disk IO is not the performance bottleneck.
Instead, the decompression will incur high overhead.

5 Conclusion
In this seminar report, we summarize the techniques of
MonetDB including its column design, query processing and
architecture, and the application of MonetDB in IR searches.
Also, we discuss and compare MonetDB with other column
databases. All these works indicate the column fashion offers
a promising solution for data intensive analysis. In particular,
the Google BigTable incorporated the column design, and this
verified that the column design has been widely accepted in
both database communities and also IR communities.
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MonetDB C-Store MSSQL’12 HYRISE BigTable

Column Layout A BAT per attribute a table maps projects, and
each attribute in a project
maps a column layout

Supports only column index one table maps multiple
projects

one table contains CFs and multiple CFs
are as a locality group.

Compression Design For, PFor, PFor-
Delta

null suppression,dictionary
encoding,running length en-
coding, bit-vector encoding,
Lempel-Ziv

Dictionary compression (for
String),RLE compression or
bit packing

dictionary-based
compression currently

a two-pass custom compression scheme:
Bentley and McIlroy’s scheme for long
common strings across a large win-
dow, and fast compression algorithm
that looks for repetitions in a small 16
KB window of the data

Query Processing an operator-at-a-
time for runtime
optimization
decision.

Compression-aware
Selinger query optimization

Batch Mode Processing for
query operators, such as
scan, filter, project, hash (in-
ner) join and (local) hash
aggregation

joins queries:both early
and late materialization
(i.e., position or value-
based operators). non-
join queries: first po-
sition and then lookup
values. Currently single-
threaded and handles one
operator at a time only.

not directly supported

Transaction Support complete support
for transactions in
compliance with the
SQL:2003 standard

high availability and snap-
shot isolation for read-only
transactions

complete supports for ACID
transactions

currently lacks support
for transactions and re-
covery

single-row transactions, which can be
used to perform atomic read-modify-
write sequences on data stored under a
single row key, and not currently support
general transactions across row keys

TABLE 1
Comparison of related works


