Probabilistic Models
Algorithms and machine learning
Advanced studies
This course provides an introduction to probabilistic modeling from a computer scientist"s perspective. Many of the research issues in Artificial Intelligence, Computational Intelligence and Machine Learning/Data Mining can be viewed as topics in the "science of uncertainty," which addresses the problem of optimal processing of incomplete information, i.e., plausible inference, and this course shows how the probabilistic modeling framework forms a theoretically elegant and practically useful solution to this problem. The course focuses on the "degree-of-belief" interpretation of probability and illustrates the use of Bayes" Theorem as a general rule of belief-updating. As a concrete example of methodological tools based on this approach, we will study probabilistic graphical models focusing in particular on (discrete) Bayesian networks, and on their applications in different probabilistic modeling tasks.


Annually in period 3

Upcoming separate exams

No exams.

Course pages