Publications by topic 
The FastICA algorithm[This is probably the most widely used algorithm for performing independent component analysis, a recently developed variant of factor analysis that is completely estimable unlike classical methods, and able to perform blind source separation]FastICA package for Matlab and other systems
A. Hyvärinen.
Fast and Robust FixedPoint Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3):626634, 1999.
A. Hyvärinen and E. Oja.
Independent Component Analysis: Algorithms and Applications.
Neural Networks, 13(45):411430, 2000.
A. Hyvärinen and E. Oja. A Fast FixedPoint Algorithm for Independent
Component Analysis.
Neural Computation, 9(7):14831492, 1997.
Postscript
gzipped PostScript
pdf.
A. Hyvärinen. New Approximations of Differential Entropy
for Independent Component Analysis and Projection Pursuit. In
Advances in Neural Information Processing Systems 10 (NIPS*97), pp. 273279, MIT Press, 1998.
Postscript
gzipped PostScript
pdf.
Related TechRep: Postscript
gzipped PostScript.
pdf.
E. Bingham and A. Hyvärinen
A fast fixedpoint algorithm for independent component analysis of complexvalued signals.
Int. J. of Neural Systems, 10(1):18, 2000.
A. Hyvärinen. OneUnit Contrast Functions for Independent
Component Analysis: A Statistical Analysis. In Neural Networks
for Signal Processing VII (Proc. IEEE NNSP Workshop '97, Amelia Island,
Florida), pp. 388397, 1997.
Postscript
gzipped PostScript
pdf.
A. Hyvärinen. The FixedPoint Algorithm and Maximum Likelihood Estimation for Independent Component Analysis. Neural Processing Letters, 10(1):15, 1999.
A. Hyvärinen. Gaussian Moments for Noisy Independent Component Analysis.
IEEE Signal Processing Letters, 6(6):145147, 1999.
A. Hyvärinen and U. Köster. FastISA: A fast fixedpoint algorithm for independent subspace analysis.
Proc. European Symposium on Artificial Neural Networks, Bruges, Belgium, 2006.
